双光变换域中复用相位编码的高安全图像加密

IF 0.7 4区 物理与天体物理 Q4 OPTICS
Optica Applicata Pub Date : 2023-01-01 DOI:10.37190/oa230309
None Zhihui Li, None Bin Gao, None Xiaoou Pan, None Linlin Li, None Chenxuan Wang, None Weizhuo Zuo, None Yu Ji, None Shutian Liu, None Zhengjun Liu
{"title":"双光变换域中复用相位编码的高安全图像加密","authors":"None Zhihui Li, None Bin Gao, None Xiaoou Pan, None Linlin Li, None Chenxuan Wang, None Weizhuo Zuo, None Yu Ji, None Shutian Liu, None Zhengjun Liu","doi":"10.37190/oa230309","DOIUrl":null,"url":null,"abstract":"A novel optical image encryption is proposed based on multiplexing of the random phase encoding with shift and rotation operations in domains of two transforms, extended fractional Fourier transform (eFrFT) and Fresnel transform. The original image is subjected to eFrFT with the action of the random phase mask. The mask is shifted and rotated to enhance the security of this encryption method. The image obtained from eFrFT is entered into Fresnel diffraction by the use of the phase mask to obtain the final encrypted image. We plan for the phase keys to be multiplexed in order to decrease the amount of keys that need to be stored in an application. Here, the displacement, rotation angle, and wavelength in this system can be used as additional keys to improve the security and reliability of the encryption system. Numerical experiments are conducted to verify the effectiveness and security of the method. The findings demonstrate that the keys are sufficiently sensitive for high security.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"58 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-security image encryption by multiplexing phase encoding in domains of dual optical transforms\",\"authors\":\"None Zhihui Li, None Bin Gao, None Xiaoou Pan, None Linlin Li, None Chenxuan Wang, None Weizhuo Zuo, None Yu Ji, None Shutian Liu, None Zhengjun Liu\",\"doi\":\"10.37190/oa230309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel optical image encryption is proposed based on multiplexing of the random phase encoding with shift and rotation operations in domains of two transforms, extended fractional Fourier transform (eFrFT) and Fresnel transform. The original image is subjected to eFrFT with the action of the random phase mask. The mask is shifted and rotated to enhance the security of this encryption method. The image obtained from eFrFT is entered into Fresnel diffraction by the use of the phase mask to obtain the final encrypted image. We plan for the phase keys to be multiplexed in order to decrease the amount of keys that need to be stored in an application. Here, the displacement, rotation angle, and wavelength in this system can be used as additional keys to improve the security and reliability of the encryption system. Numerical experiments are conducted to verify the effectiveness and security of the method. The findings demonstrate that the keys are sufficiently sensitive for high security.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37190/oa230309\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/oa230309","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于扩展分数阶傅里叶变换和菲涅耳变换两种变换域的移位和旋转操作的随机相位编码复用的光学图像加密方法。在随机相位掩模的作用下,对原始图像进行eFrFT处理。掩码被移动和旋转以增强这种加密方法的安全性。利用相位掩模将eFrFT得到的图像输入菲涅耳衍射,得到最终的加密图像。我们计划将相位键复用,以减少需要存储在应用程序中的键的数量。在此,该系统中的位移、旋转角度和波长可以作为附加密钥,以提高加密系统的安全性和可靠性。通过数值实验验证了该方法的有效性和安全性。研究结果表明,这些密钥足够敏感,具有很高的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-security image encryption by multiplexing phase encoding in domains of dual optical transforms
A novel optical image encryption is proposed based on multiplexing of the random phase encoding with shift and rotation operations in domains of two transforms, extended fractional Fourier transform (eFrFT) and Fresnel transform. The original image is subjected to eFrFT with the action of the random phase mask. The mask is shifted and rotated to enhance the security of this encryption method. The image obtained from eFrFT is entered into Fresnel diffraction by the use of the phase mask to obtain the final encrypted image. We plan for the phase keys to be multiplexed in order to decrease the amount of keys that need to be stored in an application. Here, the displacement, rotation angle, and wavelength in this system can be used as additional keys to improve the security and reliability of the encryption system. Numerical experiments are conducted to verify the effectiveness and security of the method. The findings demonstrate that the keys are sufficiently sensitive for high security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optica Applicata
Optica Applicata 物理-光学
CiteScore
1.00
自引率
16.70%
发文量
21
审稿时长
4 months
期刊介绍: Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信