{"title":"中红外光纤中基于孤子动力学的可控波长转换","authors":"None Kangle Shen, None Jian Yang, None Jiayi Zhao, None Xinyu Yang, None Hua Yang","doi":"10.37190/oa230307","DOIUrl":null,"url":null,"abstract":"We provide a convenient way to actively control the wavelength conversion of probe waves based on the soliton dynamics in the As 2 S 3 fibers. In this paper, it is found by numerical calculation that wavelength conversion occurs in the frequency domain due to the existence of refractive index barrier. By adjusting the collision position of pump pulse and probe pulse to realize the conversion of probe pulse wavelength, the effect of the power and the incident wavelength of the probe wave on the wavelength conversion are also discussed. This frequency domain conversion is of great use in the mid-infrared region, for example, all-optical conversion switches.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"2 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable wavelength conversion based on soliton dynamics in mid-infrared fiber\",\"authors\":\"None Kangle Shen, None Jian Yang, None Jiayi Zhao, None Xinyu Yang, None Hua Yang\",\"doi\":\"10.37190/oa230307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a convenient way to actively control the wavelength conversion of probe waves based on the soliton dynamics in the As 2 S 3 fibers. In this paper, it is found by numerical calculation that wavelength conversion occurs in the frequency domain due to the existence of refractive index barrier. By adjusting the collision position of pump pulse and probe pulse to realize the conversion of probe pulse wavelength, the effect of the power and the incident wavelength of the probe wave on the wavelength conversion are also discussed. This frequency domain conversion is of great use in the mid-infrared region, for example, all-optical conversion switches.\",\"PeriodicalId\":19589,\"journal\":{\"name\":\"Optica Applicata\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Applicata\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37190/oa230307\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/oa230307","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Controllable wavelength conversion based on soliton dynamics in mid-infrared fiber
We provide a convenient way to actively control the wavelength conversion of probe waves based on the soliton dynamics in the As 2 S 3 fibers. In this paper, it is found by numerical calculation that wavelength conversion occurs in the frequency domain due to the existence of refractive index barrier. By adjusting the collision position of pump pulse and probe pulse to realize the conversion of probe pulse wavelength, the effect of the power and the incident wavelength of the probe wave on the wavelength conversion are also discussed. This frequency domain conversion is of great use in the mid-infrared region, for example, all-optical conversion switches.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.