Ivan A. Smorkalov, Evgenii L. Vorobeichik, Artur A. Dzeranov, Denis A. Pankratov, Elvira A. Dovletyarova, Carolina Yáñez, Alexander Neaman
{"title":"磁铁矿纳米颗粒对抗微颗粒的田间试验:粒径在金属污染土壤修复中的作用","authors":"Ivan A. Smorkalov, Evgenii L. Vorobeichik, Artur A. Dzeranov, Denis A. Pankratov, Elvira A. Dovletyarova, Carolina Yáñez, Alexander Neaman","doi":"10.36783/18069657rbcs20230017","DOIUrl":null,"url":null,"abstract":"ABSTRACT A significant portion of the current knowledge regarding the use of iron nanoparticles for remediating metal-contaminated soils is derived from laboratory experiments, leaving several unanswered questions. This article presents a field experiment comparing the efficacy of magnetite nanoparticles and microparticles for the immobilization of metals and the growth of plants in metal-contaminated soils. This study aimed to investigate the effects of magnetite particle size on metal immobilization and plant growth in soils exposed to airborne pollution from the Middle-Urals Copper Smelter in the southern taiga subzone near Revda, Russia, 50 km from Ekaterinburg. Magnetite nano- and microparticles were added to forest litter at a 4 % w/w dose. The total metal contents in litter from the study plots were 1-2 orders of magnitude higher than background metal concentrations. The magnetite nanoparticle treatment was found to decrease the concentration of exchangeable copper in soil and improve the growth of red fescue (Festuca rubra L.) on polluted soil compared to the control. In contrast, magnetite microparticles did not show any statistically significant effects. These findings are in line with laboratory results that demonstrated the superior metal adsorption properties of magnetite nanoparticles compared to microparticles. However, this study was limited in duration (2 months), and longer field studies would be necessary to confirm the role of iron particle size in the rehabilitation of metal-contaminated soils.","PeriodicalId":21215,"journal":{"name":"Revista Brasileira De Ciencia Do Solo","volume":"71 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field experiment pitting magnetite nanoparticles against microparticles: Effect of size in the rehabilitation of metalcontaminated soil\",\"authors\":\"Ivan A. Smorkalov, Evgenii L. Vorobeichik, Artur A. Dzeranov, Denis A. Pankratov, Elvira A. Dovletyarova, Carolina Yáñez, Alexander Neaman\",\"doi\":\"10.36783/18069657rbcs20230017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A significant portion of the current knowledge regarding the use of iron nanoparticles for remediating metal-contaminated soils is derived from laboratory experiments, leaving several unanswered questions. This article presents a field experiment comparing the efficacy of magnetite nanoparticles and microparticles for the immobilization of metals and the growth of plants in metal-contaminated soils. This study aimed to investigate the effects of magnetite particle size on metal immobilization and plant growth in soils exposed to airborne pollution from the Middle-Urals Copper Smelter in the southern taiga subzone near Revda, Russia, 50 km from Ekaterinburg. Magnetite nano- and microparticles were added to forest litter at a 4 % w/w dose. The total metal contents in litter from the study plots were 1-2 orders of magnitude higher than background metal concentrations. The magnetite nanoparticle treatment was found to decrease the concentration of exchangeable copper in soil and improve the growth of red fescue (Festuca rubra L.) on polluted soil compared to the control. In contrast, magnetite microparticles did not show any statistically significant effects. These findings are in line with laboratory results that demonstrated the superior metal adsorption properties of magnetite nanoparticles compared to microparticles. However, this study was limited in duration (2 months), and longer field studies would be necessary to confirm the role of iron particle size in the rehabilitation of metal-contaminated soils.\",\"PeriodicalId\":21215,\"journal\":{\"name\":\"Revista Brasileira De Ciencia Do Solo\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira De Ciencia Do Solo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36783/18069657rbcs20230017\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira De Ciencia Do Solo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36783/18069657rbcs20230017","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Field experiment pitting magnetite nanoparticles against microparticles: Effect of size in the rehabilitation of metalcontaminated soil
ABSTRACT A significant portion of the current knowledge regarding the use of iron nanoparticles for remediating metal-contaminated soils is derived from laboratory experiments, leaving several unanswered questions. This article presents a field experiment comparing the efficacy of magnetite nanoparticles and microparticles for the immobilization of metals and the growth of plants in metal-contaminated soils. This study aimed to investigate the effects of magnetite particle size on metal immobilization and plant growth in soils exposed to airborne pollution from the Middle-Urals Copper Smelter in the southern taiga subzone near Revda, Russia, 50 km from Ekaterinburg. Magnetite nano- and microparticles were added to forest litter at a 4 % w/w dose. The total metal contents in litter from the study plots were 1-2 orders of magnitude higher than background metal concentrations. The magnetite nanoparticle treatment was found to decrease the concentration of exchangeable copper in soil and improve the growth of red fescue (Festuca rubra L.) on polluted soil compared to the control. In contrast, magnetite microparticles did not show any statistically significant effects. These findings are in line with laboratory results that demonstrated the superior metal adsorption properties of magnetite nanoparticles compared to microparticles. However, this study was limited in duration (2 months), and longer field studies would be necessary to confirm the role of iron particle size in the rehabilitation of metal-contaminated soils.
期刊介绍:
The Revista Brasileira de Ciência do Solo is a scientific journal published by the Brazilian Society for Soil Science (SBCS), founded in 1947, and is responsible for the propagation of original and inedited technical-scientific work of interest for Soil Science.
Contributions must not have been previously published or submit to other periodicals, with the only exception of articles presented in summarized form at professional meetings. Literature reviews are accepted when solicited by the Editorial Board.