关于k-Wright函数的广义欧拉型积分的一些结果

IF 0.1 Q4 MATHEMATICS, APPLIED
Muhammad Asif, Adnan Khan, Ali Akgül, Biniyam Shimelis
{"title":"关于k-Wright函数的广义欧拉型积分的一些结果","authors":"Muhammad Asif, Adnan Khan, Ali Akgül, Biniyam Shimelis","doi":"10.1504/ijans.2023.133731","DOIUrl":null,"url":null,"abstract":"Special functions such that Zeta, Bessel, Whittaker, Struve, Airy, Weber-Hermite and k-Wright functions are obtained as a solution to complex differential equations in engineering. In this work, generalised Euler-type integrals involving k-Wright function are suggested. Some special cases of this type of generalised integrals that are corresponding to well-known results in the literature are also inferred. We also study extended beta and associated functions (Gauss hypergeometric and confluent hypergeometric functions) connected to k-Wright function. For the newly extended beta, Gauss hypergeometric and confluent hypergeometric functions.","PeriodicalId":53168,"journal":{"name":"International Journal of Applied Nonlinear Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on generalised Euler-type integrals related to the k-Wright function\",\"authors\":\"Muhammad Asif, Adnan Khan, Ali Akgül, Biniyam Shimelis\",\"doi\":\"10.1504/ijans.2023.133731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Special functions such that Zeta, Bessel, Whittaker, Struve, Airy, Weber-Hermite and k-Wright functions are obtained as a solution to complex differential equations in engineering. In this work, generalised Euler-type integrals involving k-Wright function are suggested. Some special cases of this type of generalised integrals that are corresponding to well-known results in the literature are also inferred. We also study extended beta and associated functions (Gauss hypergeometric and confluent hypergeometric functions) connected to k-Wright function. For the newly extended beta, Gauss hypergeometric and confluent hypergeometric functions.\",\"PeriodicalId\":53168,\"journal\":{\"name\":\"International Journal of Applied Nonlinear Science\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Nonlinear Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijans.2023.133731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijans.2023.133731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

得到了Zeta、Bessel、Whittaker、Struve、Airy、Weber-Hermite、k-Wright等特殊函数作为工程中复杂微分方程的解。本文提出了涉及k-Wright函数的广义欧拉型积分。本文还推导了与文献中已知结果相对应的这类广义积分的一些特殊情况。我们还研究了与k-Wright函数相关的扩展β函数和相关函数(高斯超几何函数和合流超几何函数)。对于新扩展的β,高斯超几何和合流超几何函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on generalised Euler-type integrals related to the k-Wright function
Special functions such that Zeta, Bessel, Whittaker, Struve, Airy, Weber-Hermite and k-Wright functions are obtained as a solution to complex differential equations in engineering. In this work, generalised Euler-type integrals involving k-Wright function are suggested. Some special cases of this type of generalised integrals that are corresponding to well-known results in the literature are also inferred. We also study extended beta and associated functions (Gauss hypergeometric and confluent hypergeometric functions) connected to k-Wright function. For the newly extended beta, Gauss hypergeometric and confluent hypergeometric functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
71.40%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信