来自Paley Hadamard矩阵的不规则设计:广义分辨率、投影性和隐投影性质

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Guanzhou Chen, Chenlu Shi, Boxin Tang
{"title":"来自Paley Hadamard矩阵的不规则设计:广义分辨率、投影性和隐投影性质","authors":"Guanzhou Chen, Chenlu Shi, Boxin Tang","doi":"10.1214/23-ejs2148","DOIUrl":null,"url":null,"abstract":"Nonregular designs are attractive, as compared with regular designs, not just because they have flexible run sizes but also because of their performances in terms of generalized resolution, projectivity, and hidden projection property. In this paper, we conduct a comprehensive study on three classes of designs that are obtained from Paley’s two constructions of Hadamard matrices. In terms of generalized resolution, we complete the study of Shi and Tang [15] on strength-two designs by adding results on strength-three designs. In terms of projectivty and hidden projection property, our results substantially expand those of Bulutoglu and Cheng [2]. For the purpose of practical applications, we conduct an extensive search of minimum G-aberration designs from those with maximum generalized resolutions and results are obtained for strength-two designs with 36, 44, 48, 52, 60, 64, 96 and 128 runs and strength-three designs with 72, 88 and 120 runs.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"6 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonregular designs from Paley’s Hadamard matrices: Generalized resolution, projectivity and hidden projection property\",\"authors\":\"Guanzhou Chen, Chenlu Shi, Boxin Tang\",\"doi\":\"10.1214/23-ejs2148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonregular designs are attractive, as compared with regular designs, not just because they have flexible run sizes but also because of their performances in terms of generalized resolution, projectivity, and hidden projection property. In this paper, we conduct a comprehensive study on three classes of designs that are obtained from Paley’s two constructions of Hadamard matrices. In terms of generalized resolution, we complete the study of Shi and Tang [15] on strength-two designs by adding results on strength-three designs. In terms of projectivty and hidden projection property, our results substantially expand those of Bulutoglu and Cheng [2]. For the purpose of practical applications, we conduct an extensive search of minimum G-aberration designs from those with maximum generalized resolutions and results are obtained for strength-two designs with 36, 44, 48, 52, 60, 64, 96 and 128 runs and strength-three designs with 72, 88 and 120 runs.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2148\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejs2148","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

与规则设计相比,不规则设计具有吸引力,不仅因为它们具有灵活的运行尺寸,还因为它们在广义分辨率、投影性和隐藏投影特性方面的性能。在本文中,我们对由Paley的两个Hadamard矩阵构造得到的三类设计进行了全面的研究。在广义分辨率方面,我们补充了三强度设计的结果,完成了Shi和Tang[15]对二强度设计的研究。在投影性和隐投影性方面,我们的结果大大扩展了Bulutoglu和Cheng[2]的结果。为了实际应用,我们从具有最大广义分辨率的设计中广泛搜索最小g像差设计,并获得了强度2设计(36、44、48、52、60、64、96和128次)和强度3设计(72、88和120次)的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonregular designs from Paley’s Hadamard matrices: Generalized resolution, projectivity and hidden projection property
Nonregular designs are attractive, as compared with regular designs, not just because they have flexible run sizes but also because of their performances in terms of generalized resolution, projectivity, and hidden projection property. In this paper, we conduct a comprehensive study on three classes of designs that are obtained from Paley’s two constructions of Hadamard matrices. In terms of generalized resolution, we complete the study of Shi and Tang [15] on strength-two designs by adding results on strength-three designs. In terms of projectivty and hidden projection property, our results substantially expand those of Bulutoglu and Cheng [2]. For the purpose of practical applications, we conduct an extensive search of minimum G-aberration designs from those with maximum generalized resolutions and results are obtained for strength-two designs with 36, 44, 48, 52, 60, 64, 96 and 128 runs and strength-three designs with 72, 88 and 120 runs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信