Akito Hattori, Koji Okuhara, Yasuhiro Shimizu, Tohru Ohta, Shigeru Suzuki
{"title":"一项日本学校尿液筛查项目导致了KCNJ11</i>-MODY的诊断:一份病例报告","authors":"Akito Hattori, Koji Okuhara, Yasuhiro Shimizu, Tohru Ohta, Shigeru Suzuki","doi":"10.1297/cpe.2023-0037","DOIUrl":null,"url":null,"abstract":"Although KCNJ11 mutation is the main cause of neonatal diabetes mellitus, reports of maturity-onset diabetes in the young (MODY) related to KCNJ11 are rare. Here, we report a case of KCNJ11-MODY in a 12-yr-old Japanese female. Hyperglycemia was initially detected during a school urine screening program. Subsequent laboratory examinations revealed impaired insulin secretion; however, no islet autoantibodies were detected. Genetic testing of KCNJ11 revealed a novel heterozygous variant, c.153G>C, p.Glu51Asp. The patient’s father had the same mutation and was diagnosed with diabetes at 46 yr of age. KCNJ11-MODY was suspected, and sulfonylurea administration resulted in adequate glycemic control in the patient. The American College of Medical Genetics and Genomics guidelines classify this variant as likely pathogenic, and the effectiveness of sulfonylureas supports its pathogenicity. The patient could be treated with 0.02–0.03 mg/kg/d of glibenclamide, as this mutation may be responsive to only a small amount of sulfonylurea. A detailed family history and sequencing of causative genes, including KCNJ11, may help diagnose diabetes in school-aged patients.","PeriodicalId":10678,"journal":{"name":"Clinical Pediatric Endocrinology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Japanese school urine screening program led to the diagnosis of <i>KCNJ11</i>-MODY: a case report\",\"authors\":\"Akito Hattori, Koji Okuhara, Yasuhiro Shimizu, Tohru Ohta, Shigeru Suzuki\",\"doi\":\"10.1297/cpe.2023-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although KCNJ11 mutation is the main cause of neonatal diabetes mellitus, reports of maturity-onset diabetes in the young (MODY) related to KCNJ11 are rare. Here, we report a case of KCNJ11-MODY in a 12-yr-old Japanese female. Hyperglycemia was initially detected during a school urine screening program. Subsequent laboratory examinations revealed impaired insulin secretion; however, no islet autoantibodies were detected. Genetic testing of KCNJ11 revealed a novel heterozygous variant, c.153G>C, p.Glu51Asp. The patient’s father had the same mutation and was diagnosed with diabetes at 46 yr of age. KCNJ11-MODY was suspected, and sulfonylurea administration resulted in adequate glycemic control in the patient. The American College of Medical Genetics and Genomics guidelines classify this variant as likely pathogenic, and the effectiveness of sulfonylureas supports its pathogenicity. The patient could be treated with 0.02–0.03 mg/kg/d of glibenclamide, as this mutation may be responsive to only a small amount of sulfonylurea. A detailed family history and sequencing of causative genes, including KCNJ11, may help diagnose diabetes in school-aged patients.\",\"PeriodicalId\":10678,\"journal\":{\"name\":\"Clinical Pediatric Endocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pediatric Endocrinology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1297/cpe.2023-0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pediatric Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1297/cpe.2023-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A Japanese school urine screening program led to the diagnosis of <i>KCNJ11</i>-MODY: a case report
Although KCNJ11 mutation is the main cause of neonatal diabetes mellitus, reports of maturity-onset diabetes in the young (MODY) related to KCNJ11 are rare. Here, we report a case of KCNJ11-MODY in a 12-yr-old Japanese female. Hyperglycemia was initially detected during a school urine screening program. Subsequent laboratory examinations revealed impaired insulin secretion; however, no islet autoantibodies were detected. Genetic testing of KCNJ11 revealed a novel heterozygous variant, c.153G>C, p.Glu51Asp. The patient’s father had the same mutation and was diagnosed with diabetes at 46 yr of age. KCNJ11-MODY was suspected, and sulfonylurea administration resulted in adequate glycemic control in the patient. The American College of Medical Genetics and Genomics guidelines classify this variant as likely pathogenic, and the effectiveness of sulfonylureas supports its pathogenicity. The patient could be treated with 0.02–0.03 mg/kg/d of glibenclamide, as this mutation may be responsive to only a small amount of sulfonylurea. A detailed family history and sequencing of causative genes, including KCNJ11, may help diagnose diabetes in school-aged patients.