分数次临界Sobolev嵌入最佳常数的精细界及其在非局部偏微分方程中的应用

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Daniele Cassani, Lele Du
{"title":"分数次临界Sobolev嵌入最佳常数的精细界及其在非局部偏微分方程中的应用","authors":"Daniele Cassani, Lele Du","doi":"10.1515/anona-2023-0103","DOIUrl":null,"url":null,"abstract":"Abstract We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msubsup> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> <m:mo>↪</m:mo> <m:mspace width=\"0.33em\" /> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> {W}_{0}^{s,p}(\\Omega )\\hspace{0.33em}\\hookrightarrow \\hspace{0.33em}{L}^{q}(\\Omega ), where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> N\\ge 1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:math> 0\\lt s\\lt 1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:math> p=1,2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo><</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>N</m:mi> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mi>p</m:mi> </m:mrow> </m:mfrac> </m:math> 1\\le q\\lt {p}_{s}^{\\ast }=\\frac{Np}{N-sp} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\Omega \\subset {{\\mathbb{R}}}^{N} is a bounded smooth domain or the whole space <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{N} . Our results cover the borderline case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> p=1 , the Hilbert case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>></m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:math> N\\gt 2s , and the so-called Sobolev limiting case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> N=1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:math> s=\\frac{1}{2} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs\",\"authors\":\"Daniele Cassani, Lele Du\",\"doi\":\"10.1515/anona-2023-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:msubsup> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mspace width=\\\"0.33em\\\" /> <m:mo>↪</m:mo> <m:mspace width=\\\"0.33em\\\" /> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> {W}_{0}^{s,p}(\\\\Omega )\\\\hspace{0.33em}\\\\hookrightarrow \\\\hspace{0.33em}{L}^{q}(\\\\Omega ), where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> N\\\\ge 1 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:math> 0\\\\lt s\\\\lt 1 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:math> p=1,2 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo><</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>N</m:mi> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mi>p</m:mi> </m:mrow> </m:mfrac> </m:math> 1\\\\le q\\\\lt {p}_{s}^{\\\\ast }=\\\\frac{Np}{N-sp} , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\\\Omega \\\\subset {{\\\\mathbb{R}}}^{N} is a bounded smooth domain or the whole space <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\\\mathbb{R}}}^{N} . Our results cover the borderline case <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> p=1 , the Hilbert case <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:mo>></m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:math> N\\\\gt 2s , and the so-called Sobolev limiting case <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> N=1 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:math> s=\\\\frac{1}{2} , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0103\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0103","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

建立了分数阶次临界Sobolev嵌入w0 s, p (Ω)“L q”(Ω), {w} _ {0} _ {s,p} (\Omega) \hspace{0.33em}\hookrightarrow^\hspace{0.33em}{L} q {(}\Omega)的最佳常数的精细界,其中N≥1 N \ge 1,0 &lt;S &lt;1 0 \lt s \lt 1, p=1,2 p= 1,2,1≤q &lt;p s∗= N p N−sp 1 \le q \ltp{ _ }s{ ^ }{\ast=}\frac{Np}{N-sp},和Ω∧R N \Omega\subset{{\mathbb{R}}} ^ {n}是一个有界光滑域或整个空间R N {{\mathbb{R}}} ^ {n}。我们的结果涵盖了边界情形p=1 p=1, Hilbert情形p=2 p=2, N &gt;2s N \gt s,以及所谓的Sobolev极限情况N=1 N=1, s= 1 2s = \frac{1}{2}, p=2 p=2,其中通过极限过程给出了一个尖锐渐近估计。应用所得结果证明了一类广泛的非局部偏微分方程解的存在性和不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs
Abstract We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings W 0 s , p ( Ω ) L q ( Ω ) , {W}_{0}^{s,p}(\Omega )\hspace{0.33em}\hookrightarrow \hspace{0.33em}{L}^{q}(\Omega ), where N 1 N\ge 1 , 0 < s < 1 0\lt s\lt 1 , p = 1 , 2 p=1,2 , 1 q < p s = N p N s p 1\le q\lt {p}_{s}^{\ast }=\frac{Np}{N-sp} , and Ω R N \Omega \subset {{\mathbb{R}}}^{N} is a bounded smooth domain or the whole space R N {{\mathbb{R}}}^{N} . Our results cover the borderline case p = 1 p=1 , the Hilbert case p = 2 p=2 , N > 2 s N\gt 2s , and the so-called Sobolev limiting case N = 1 N=1 , s = 1 2 s=\frac{1}{2} , and p = 2 p=2 , where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信