求助PDF
{"title":"分数次临界Sobolev嵌入最佳常数的精细界及其在非局部偏微分方程中的应用","authors":"Daniele Cassani, Lele Du","doi":"10.1515/anona-2023-0103","DOIUrl":null,"url":null,"abstract":"Abstract We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msubsup> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> <m:mo>↪</m:mo> <m:mspace width=\"0.33em\" /> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> {W}_{0}^{s,p}(\\Omega )\\hspace{0.33em}\\hookrightarrow \\hspace{0.33em}{L}^{q}(\\Omega ), where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> N\\ge 1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:math> 0\\lt s\\lt 1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:math> p=1,2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo><</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>N</m:mi> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mi>p</m:mi> </m:mrow> </m:mfrac> </m:math> 1\\le q\\lt {p}_{s}^{\\ast }=\\frac{Np}{N-sp} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\Omega \\subset {{\\mathbb{R}}}^{N} is a bounded smooth domain or the whole space <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{N} . Our results cover the borderline case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> p=1 , the Hilbert case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>></m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:math> N\\gt 2s , and the so-called Sobolev limiting case <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> N=1 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:math> s=\\frac{1}{2} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs\",\"authors\":\"Daniele Cassani, Lele Du\",\"doi\":\"10.1515/anona-2023-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:msubsup> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mspace width=\\\"0.33em\\\" /> <m:mo>↪</m:mo> <m:mspace width=\\\"0.33em\\\" /> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> {W}_{0}^{s,p}(\\\\Omega )\\\\hspace{0.33em}\\\\hookrightarrow \\\\hspace{0.33em}{L}^{q}(\\\\Omega ), where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> N\\\\ge 1 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:math> 0\\\\lt s\\\\lt 1 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:math> p=1,2 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo><</m:mo> <m:msubsup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mo>∗</m:mo> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>N</m:mi> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mi>s</m:mi> <m:mi>p</m:mi> </m:mrow> </m:mfrac> </m:math> 1\\\\le q\\\\lt {p}_{s}^{\\\\ast }=\\\\frac{Np}{N-sp} , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> \\\\Omega \\\\subset {{\\\\mathbb{R}}}^{N} is a bounded smooth domain or the whole space <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\\\mathbb{R}}}^{N} . Our results cover the borderline case <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> p=1 , the Hilbert case <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:mo>></m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:math> N\\\\gt 2s , and the so-called Sobolev limiting case <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> N=1 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>s</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:math> s=\\\\frac{1}{2} , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:math> p=2 , where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0103\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0103","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
引用
批量引用
摘要
建立了分数阶次临界Sobolev嵌入w0 s, p (Ω)“L q”(Ω), {w} _ {0} _ {s,p} (\Omega) \hspace{0.33em}\hookrightarrow^\hspace{0.33em}{L} q {(}\Omega)的最佳常数的精细界,其中N≥1 N \ge 1,0 &lt;S &lt;1 0 \lt s \lt 1, p=1,2 p= 1,2,1≤q &lt;p s∗= N p N−sp 1 \le q \ltp{ _ }s{ ^ }{\ast=}\frac{Np}{N-sp},和Ω∧R N \Omega\subset{{\mathbb{R}}} ^ {n}是一个有界光滑域或整个空间R N {{\mathbb{R}}} ^ {n}。我们的结果涵盖了边界情形p=1 p=1, Hilbert情形p=2 p=2, N &gt;2s N \gt s,以及所谓的Sobolev极限情况N=1 N=1, s= 1 2s = \frac{1}{2}, p=2 p=2,其中通过极限过程给出了一个尖锐渐近估计。应用所得结果证明了一类广泛的非局部偏微分方程解的存在性和不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs
Abstract We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings W 0 s , p ( Ω ) ↪ L q ( Ω ) , {W}_{0}^{s,p}(\Omega )\hspace{0.33em}\hookrightarrow \hspace{0.33em}{L}^{q}(\Omega ), where N ≥ 1 N\ge 1 , 0 < s < 1 0\lt s\lt 1 , p = 1 , 2 p=1,2 , 1 ≤ q < p s ∗ = N p N − s p 1\le q\lt {p}_{s}^{\ast }=\frac{Np}{N-sp} , and Ω ⊂ R N \Omega \subset {{\mathbb{R}}}^{N} is a bounded smooth domain or the whole space R N {{\mathbb{R}}}^{N} . Our results cover the borderline case p = 1 p=1 , the Hilbert case p = 2 p=2 , N > 2 s N\gt 2s , and the so-called Sobolev limiting case N = 1 N=1 , s = 1 2 s=\frac{1}{2} , and p = 2 p=2 , where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.