{"title":"基于两阶段正矩阵分解和稳健回归融合策略的PM2.5二次气溶胶表征","authors":"Chun-Sheng Huang, Ho-Tang Liao, Chia-Yang Chen, Li-Hao Young, Ta-Chih Hsiao, Tsung-I Chou, Jyun-Min Chang, Kuan-Lin Lai, Chang-Fu Wu","doi":"10.4209/aaqr.230121","DOIUrl":null,"url":null,"abstract":"Positive Matrix Factorization (PMF) is a commonly used receptor model for source apportionment of PM2.5. However, PMF results often retrieve an individual factor mainly composed of secondary aerosols, making it difficult to link with primary emission sources and formulate effective air pollution control strategies. To overcome this limitation, we employed a two-stage PMF modeling approach with adjustments of the species weighting, which was fused with a robust regression model to better characterize the sources of PM2.5 secondary aerosols. Additionally, organic molecular tracers were incorporated into PMF for source identification. A field campaign was conducted between May and December 2021 in Taichung, Taiwan. An improved PMF model was utilized to resolve the multiple time resolution data of 3-h online and 24-h offline measurements of PM2.5 compositions. Retrieved factors from PMF were averaged over 24-h intervals and then applied in robust regression analysis to re-apportion the contributions. Comparing with conventional PMF, downweighting the secondary aerosol-related species in the model was more effective in linking them to primary emission sources. The results from fusion models showed that the majority of secondary aerosols (sum of secondary aerosol-related species = 2.67 μg m-3) within three hours were mainly contributed by oil combustion, while the largest contributor of secondary aerosols (1.65 μg m-3) over 24 hours was industry, highlighting the need for regulation of these two sources based on various temporal scales. The developed fusion strategy of two-stage PMF and robust regression provided refined results and can aid in the management of PM2.5.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"24 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing PM2.5 Secondary Aerosols via a Fusion Strategy of Two-stage Positive Matrix Factorization and Robust Regression\",\"authors\":\"Chun-Sheng Huang, Ho-Tang Liao, Chia-Yang Chen, Li-Hao Young, Ta-Chih Hsiao, Tsung-I Chou, Jyun-Min Chang, Kuan-Lin Lai, Chang-Fu Wu\",\"doi\":\"10.4209/aaqr.230121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positive Matrix Factorization (PMF) is a commonly used receptor model for source apportionment of PM2.5. However, PMF results often retrieve an individual factor mainly composed of secondary aerosols, making it difficult to link with primary emission sources and formulate effective air pollution control strategies. To overcome this limitation, we employed a two-stage PMF modeling approach with adjustments of the species weighting, which was fused with a robust regression model to better characterize the sources of PM2.5 secondary aerosols. Additionally, organic molecular tracers were incorporated into PMF for source identification. A field campaign was conducted between May and December 2021 in Taichung, Taiwan. An improved PMF model was utilized to resolve the multiple time resolution data of 3-h online and 24-h offline measurements of PM2.5 compositions. Retrieved factors from PMF were averaged over 24-h intervals and then applied in robust regression analysis to re-apportion the contributions. Comparing with conventional PMF, downweighting the secondary aerosol-related species in the model was more effective in linking them to primary emission sources. The results from fusion models showed that the majority of secondary aerosols (sum of secondary aerosol-related species = 2.67 μg m-3) within three hours were mainly contributed by oil combustion, while the largest contributor of secondary aerosols (1.65 μg m-3) over 24 hours was industry, highlighting the need for regulation of these two sources based on various temporal scales. The developed fusion strategy of two-stage PMF and robust regression provided refined results and can aid in the management of PM2.5.\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.230121\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4209/aaqr.230121","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Characterizing PM2.5 Secondary Aerosols via a Fusion Strategy of Two-stage Positive Matrix Factorization and Robust Regression
Positive Matrix Factorization (PMF) is a commonly used receptor model for source apportionment of PM2.5. However, PMF results often retrieve an individual factor mainly composed of secondary aerosols, making it difficult to link with primary emission sources and formulate effective air pollution control strategies. To overcome this limitation, we employed a two-stage PMF modeling approach with adjustments of the species weighting, which was fused with a robust regression model to better characterize the sources of PM2.5 secondary aerosols. Additionally, organic molecular tracers were incorporated into PMF for source identification. A field campaign was conducted between May and December 2021 in Taichung, Taiwan. An improved PMF model was utilized to resolve the multiple time resolution data of 3-h online and 24-h offline measurements of PM2.5 compositions. Retrieved factors from PMF were averaged over 24-h intervals and then applied in robust regression analysis to re-apportion the contributions. Comparing with conventional PMF, downweighting the secondary aerosol-related species in the model was more effective in linking them to primary emission sources. The results from fusion models showed that the majority of secondary aerosols (sum of secondary aerosol-related species = 2.67 μg m-3) within three hours were mainly contributed by oil combustion, while the largest contributor of secondary aerosols (1.65 μg m-3) over 24 hours was industry, highlighting the need for regulation of these two sources based on various temporal scales. The developed fusion strategy of two-stage PMF and robust regression provided refined results and can aid in the management of PM2.5.
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.