模态相关类型理论的求值归一化

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
JASON Z. S. HU, JUNYOUNG JANG, BRIGITTE PIENTKA
{"title":"模态相关类型理论的求值归一化","authors":"JASON Z. S. HU, JUNYOUNG JANG, BRIGITTE PIENTKA","doi":"10.1017/s0956796823000060","DOIUrl":null,"url":null,"abstract":"Abstract We present the Kripke-style modal type theory, Mint, which combines dependent types and the necessity modality. It extends the Kripke-style modal lambda-calculus by Pfenning and Davies to the full Martin-Löf type theory. As such it encompasses dependently typed variants of system K, T, K4, and S4. Further, Mint seamlessly supports a full universe hierarchy, usual inductive types, and large eliminations. In this paper, we give a modular sound and complete normalization-by-evaluation (NbE) proof for Mint based on an untyped domain model, which applies to all four aforementioned modal systems without modification. This NbE proof yields a normalization algorithm for Mint, which can be directly implemented. To further strengthen our results, our models and the NbE proof are fully mechanized in Agda and we extract a Haskell implementation of our NbE algorithm from it.","PeriodicalId":15874,"journal":{"name":"Journal of Functional Programming","volume":"37 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Normalization by evaluation for modal dependent type theory\",\"authors\":\"JASON Z. S. HU, JUNYOUNG JANG, BRIGITTE PIENTKA\",\"doi\":\"10.1017/s0956796823000060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present the Kripke-style modal type theory, Mint, which combines dependent types and the necessity modality. It extends the Kripke-style modal lambda-calculus by Pfenning and Davies to the full Martin-Löf type theory. As such it encompasses dependently typed variants of system K, T, K4, and S4. Further, Mint seamlessly supports a full universe hierarchy, usual inductive types, and large eliminations. In this paper, we give a modular sound and complete normalization-by-evaluation (NbE) proof for Mint based on an untyped domain model, which applies to all four aforementioned modal systems without modification. This NbE proof yields a normalization algorithm for Mint, which can be directly implemented. To further strengthen our results, our models and the NbE proof are fully mechanized in Agda and we extract a Haskell implementation of our NbE algorithm from it.\",\"PeriodicalId\":15874,\"journal\":{\"name\":\"Journal of Functional Programming\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956796823000060\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0956796823000060","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文提出了Kripke-style模态类型理论Mint,它结合了依赖类型和必然模态。它将Pfenning和Davies的Kripke-style模态λ演算扩展到完整的Martin-Löf类型理论。因此,它包含系统K、T、k4和s4的依赖类型变体。此外,Mint无缝地支持完整的宇宙层次结构,通常的归纳类型和大型消去。在本文中,我们给出了一个基于无类型域模型的Mint的模块化健全的、完全的评估归一化(NbE)证明,该证明适用于上述所有四种模态系统而无需修改。这个NbE证明为Mint提供了一个规范化算法,该算法可以直接实现。为了进一步加强我们的结果,我们的模型和NbE证明在Agda中完全机械化,我们从中提取了NbE算法的Haskell实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalization by evaluation for modal dependent type theory
Abstract We present the Kripke-style modal type theory, Mint, which combines dependent types and the necessity modality. It extends the Kripke-style modal lambda-calculus by Pfenning and Davies to the full Martin-Löf type theory. As such it encompasses dependently typed variants of system K, T, K4, and S4. Further, Mint seamlessly supports a full universe hierarchy, usual inductive types, and large eliminations. In this paper, we give a modular sound and complete normalization-by-evaluation (NbE) proof for Mint based on an untyped domain model, which applies to all four aforementioned modal systems without modification. This NbE proof yields a normalization algorithm for Mint, which can be directly implemented. To further strengthen our results, our models and the NbE proof are fully mechanized in Agda and we extract a Haskell implementation of our NbE algorithm from it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Programming
Journal of Functional Programming 工程技术-计算机:软件工程
CiteScore
1.70
自引率
0.00%
发文量
9
审稿时长
>12 weeks
期刊介绍: Journal of Functional Programming is the only journal devoted solely to the design, implementation, and application of functional programming languages, spanning the range from mathematical theory to industrial practice. Topics covered include functional languages and extensions, implementation techniques, reasoning and proof, program transformation and synthesis, type systems, type theory, language-based security, memory management, parallelism and applications. The journal is of interest to computer scientists, software engineers, programming language researchers and mathematicians interested in the logical foundations of programming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信