S. V. Evangelin Sonia, R. Nedunchezhian, M. Rajalakshmi
{"title":"多模态集成深度神经网络预测2型糖尿病男性心血管疾病","authors":"S. V. Evangelin Sonia, R. Nedunchezhian, M. Rajalakshmi","doi":"10.1080/00051144.2023.2269515","DOIUrl":null,"url":null,"abstract":"Heart disease is a leading cause of mortality and illness worldwide. Heart disease identification and prediction may considerably improve patient outcomes. We use deep neural networks (DNNs) and heart rate variability (HRV) data to construct a deep learning strategy for diagnosing cardiovascular abnormalities in diabetic men. The non-invasive HRV test shows how the autonomic nervous system affects heart function. It show promise for diagnosing heart dysfunction. DNNs, noted for their ability to interpret complex data patterns, are useful for prediction and diagnosis. Our unique system, DNHRV (Deep Neural Network with HRV Features), integrates two networks using DNN and DCNN methods (Deep Convolutional Neural Network). Our DNN analyses clinical risk variables using powerful deep learning architecture, while the DCNN trains. We integrate HRV signals, medical pictures, and other clinical parameters with deep neural network computing power in the suggested technique (DNNs). This multimodal technique gives us a complete picture of each patient's cardiovascular health by utilising physiological and imaging-based indicators. Our DNHRV model outperformed earlier models in accuracy, precision, F1-score, and other parameters. Our prediction model was evaluated using SHAREEDB, proving its accuracy and stability. The DNHRV model exceeds state-of-the-art CVD prediction methods by a large margin, with 98.8% accuracy, according to extensive SHAREEDB dataset tests. By highlighting CVD predicting data points, the suggested technique increased interpretability and accuracy.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":"6 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-modal integrated deep neural networks for the prediction of cardiovascular disease in type-2 diabetic males\",\"authors\":\"S. V. Evangelin Sonia, R. Nedunchezhian, M. Rajalakshmi\",\"doi\":\"10.1080/00051144.2023.2269515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart disease is a leading cause of mortality and illness worldwide. Heart disease identification and prediction may considerably improve patient outcomes. We use deep neural networks (DNNs) and heart rate variability (HRV) data to construct a deep learning strategy for diagnosing cardiovascular abnormalities in diabetic men. The non-invasive HRV test shows how the autonomic nervous system affects heart function. It show promise for diagnosing heart dysfunction. DNNs, noted for their ability to interpret complex data patterns, are useful for prediction and diagnosis. Our unique system, DNHRV (Deep Neural Network with HRV Features), integrates two networks using DNN and DCNN methods (Deep Convolutional Neural Network). Our DNN analyses clinical risk variables using powerful deep learning architecture, while the DCNN trains. We integrate HRV signals, medical pictures, and other clinical parameters with deep neural network computing power in the suggested technique (DNNs). This multimodal technique gives us a complete picture of each patient's cardiovascular health by utilising physiological and imaging-based indicators. Our DNHRV model outperformed earlier models in accuracy, precision, F1-score, and other parameters. Our prediction model was evaluated using SHAREEDB, proving its accuracy and stability. The DNHRV model exceeds state-of-the-art CVD prediction methods by a large margin, with 98.8% accuracy, according to extensive SHAREEDB dataset tests. By highlighting CVD predicting data points, the suggested technique increased interpretability and accuracy.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2269515\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2269515","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A multi-modal integrated deep neural networks for the prediction of cardiovascular disease in type-2 diabetic males
Heart disease is a leading cause of mortality and illness worldwide. Heart disease identification and prediction may considerably improve patient outcomes. We use deep neural networks (DNNs) and heart rate variability (HRV) data to construct a deep learning strategy for diagnosing cardiovascular abnormalities in diabetic men. The non-invasive HRV test shows how the autonomic nervous system affects heart function. It show promise for diagnosing heart dysfunction. DNNs, noted for their ability to interpret complex data patterns, are useful for prediction and diagnosis. Our unique system, DNHRV (Deep Neural Network with HRV Features), integrates two networks using DNN and DCNN methods (Deep Convolutional Neural Network). Our DNN analyses clinical risk variables using powerful deep learning architecture, while the DCNN trains. We integrate HRV signals, medical pictures, and other clinical parameters with deep neural network computing power in the suggested technique (DNNs). This multimodal technique gives us a complete picture of each patient's cardiovascular health by utilising physiological and imaging-based indicators. Our DNHRV model outperformed earlier models in accuracy, precision, F1-score, and other parameters. Our prediction model was evaluated using SHAREEDB, proving its accuracy and stability. The DNHRV model exceeds state-of-the-art CVD prediction methods by a large margin, with 98.8% accuracy, according to extensive SHAREEDB dataset tests. By highlighting CVD predicting data points, the suggested technique increased interpretability and accuracy.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.