语境依赖的异质性偏好:对Barseghyan和Molinari(2023)的评析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Matias D. Cattaneo, Xinwei Ma, Yusufcan Masatlioglu
{"title":"语境依赖的异质性偏好:对Barseghyan和Molinari(2023)的评析","authors":"Matias D. Cattaneo, Xinwei Ma, Yusufcan Masatlioglu","doi":"10.1080/07350015.2023.2216740","DOIUrl":null,"url":null,"abstract":"Abstract–Barseghyan and Molinari give sufficient conditions for semi-nonparametric point identification of parameters of interest in a mixture model of decision-making under risk, allowing for unobserved heterogeneity in utility functions and limited consideration. A key assumption in the model is that the heterogeneity of risk preferences is unobservable but context-independent. In this comment, we build on their insights and present identification results in a setting where the risk preferences are allowed to be context-dependent.KEYWORDS: Discrete choiceRandom limited considerationRandom utilitySemi-nonparametric identification AcknowledgmentsWe thank Francesca Molinari and the participants at the 2023 ASSA meetings (JBES Session: Risk Preference Types, Limited Consideration, and Welfare) for comments.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingCattaneo gratefully acknowledges financial support from the National Science Foundation through grants SES-1947805 and SES-2241575.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-Dependent Heterogeneous Preferences: A Comment on Barseghyan and Molinari (2023)\",\"authors\":\"Matias D. Cattaneo, Xinwei Ma, Yusufcan Masatlioglu\",\"doi\":\"10.1080/07350015.2023.2216740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract–Barseghyan and Molinari give sufficient conditions for semi-nonparametric point identification of parameters of interest in a mixture model of decision-making under risk, allowing for unobserved heterogeneity in utility functions and limited consideration. A key assumption in the model is that the heterogeneity of risk preferences is unobservable but context-independent. In this comment, we build on their insights and present identification results in a setting where the risk preferences are allowed to be context-dependent.KEYWORDS: Discrete choiceRandom limited considerationRandom utilitySemi-nonparametric identification AcknowledgmentsWe thank Francesca Molinari and the participants at the 2023 ASSA meetings (JBES Session: Risk Preference Types, Limited Consideration, and Welfare) for comments.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingCattaneo gratefully acknowledges financial support from the National Science Foundation through grants SES-1947805 and SES-2241575.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2023.2216740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2216740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

barseghyan和Molinari给出了风险下决策混合模型中感兴趣参数的半非参数点识别的充分条件,允许效用函数的未观察到异质性和有限的考虑。该模型的一个关键假设是,风险偏好的异质性是不可观察的,但与环境无关。在这篇评论中,我们以他们的见解为基础,并在允许风险偏好与上下文相关的环境中呈现识别结果。我们感谢Francesca Molinari和2023年ASSA会议(JBES会议:风险偏好类型、有限考虑和福利)的参与者提供的意见。声明作者报告无竞争利益需要申报。cataneo感谢国家科学基金会通过SES-1947805和SES-2241575拨款提供的财政支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-Dependent Heterogeneous Preferences: A Comment on Barseghyan and Molinari (2023)
Abstract–Barseghyan and Molinari give sufficient conditions for semi-nonparametric point identification of parameters of interest in a mixture model of decision-making under risk, allowing for unobserved heterogeneity in utility functions and limited consideration. A key assumption in the model is that the heterogeneity of risk preferences is unobservable but context-independent. In this comment, we build on their insights and present identification results in a setting where the risk preferences are allowed to be context-dependent.KEYWORDS: Discrete choiceRandom limited considerationRandom utilitySemi-nonparametric identification AcknowledgmentsWe thank Francesca Molinari and the participants at the 2023 ASSA meetings (JBES Session: Risk Preference Types, Limited Consideration, and Welfare) for comments.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingCattaneo gratefully acknowledges financial support from the National Science Foundation through grants SES-1947805 and SES-2241575.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信