{"title":"欧盟、美国和中国公共数据治理和人工智能政策的机器学习比较分析","authors":"Bisson Christophe, Adele Giron, Gauthier Verin","doi":"10.37380/jisib.v13i2.1084","DOIUrl":null,"url":null,"abstract":"This paper explores the public data governance and AI policies in the world’s three main technological regions which are the United States, China, and European Union based on scientific literature analysis with machine learning. We used the RapidMiner text mining algorithm to classify texts and define the recuring themes in each region through Terms Frequency-Inverse Document Frequency, supervised machine learning techniques with KNN, and Naïve Bayes. Therein, our results reveal the most influential items for each region that emphasize three different approaches in China, the United States and the EU.","PeriodicalId":43580,"journal":{"name":"Journal of Intelligence Studies in Business","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis with machine learning of public data governance and AI policies in the European Union, United States, and China\",\"authors\":\"Bisson Christophe, Adele Giron, Gauthier Verin\",\"doi\":\"10.37380/jisib.v13i2.1084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the public data governance and AI policies in the world’s three main technological regions which are the United States, China, and European Union based on scientific literature analysis with machine learning. We used the RapidMiner text mining algorithm to classify texts and define the recuring themes in each region through Terms Frequency-Inverse Document Frequency, supervised machine learning techniques with KNN, and Naïve Bayes. Therein, our results reveal the most influential items for each region that emphasize three different approaches in China, the United States and the EU.\",\"PeriodicalId\":43580,\"journal\":{\"name\":\"Journal of Intelligence Studies in Business\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligence Studies in Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37380/jisib.v13i2.1084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligence Studies in Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37380/jisib.v13i2.1084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
A comparative analysis with machine learning of public data governance and AI policies in the European Union, United States, and China
This paper explores the public data governance and AI policies in the world’s three main technological regions which are the United States, China, and European Union based on scientific literature analysis with machine learning. We used the RapidMiner text mining algorithm to classify texts and define the recuring themes in each region through Terms Frequency-Inverse Document Frequency, supervised machine learning techniques with KNN, and Naïve Bayes. Therein, our results reveal the most influential items for each region that emphasize three different approaches in China, the United States and the EU.
期刊介绍:
The Journal of Intelligence Studies in Business (JISIB) is a double blinded peer reviewed open access journal published by Halmstad University, Sweden. Its mission is to help facilitate and publish original research, conference proceedings and book reviews. The journal includes articles within areas such as Competitive Intelligence, Business Intelligence, Market Intelligence, Scientific and Technical Intelligence, Collective Intelligence and Geo-economics. This means that the journal has a managerial as well as an applied technical side (Information Systems), as these are now well integrated in real life Business Intelligence solutions. By focusing on business applications the journal do not compete directly with journals of Library Sciences or State or Military Intelligence Studies. Topics within the selected study areas should show clear practical implications.