{"title":"作为制备多氢喹啉杂环的有机纳米催化剂的新型二维超薄纳米带 Cd-Ag-MOF@ZnO 复合材料的合成与表征","authors":"","doi":"10.1080/10406638.2023.2261596","DOIUrl":null,"url":null,"abstract":"<div><div>Novel ultrathin Cd-Ag-MOF@ZnO composite nanoribbons (Ut-Nr Cd-Ag-MOF@ZnO C) were prepared and characterized in this research to serve as organocatalyst in Hantzsch condensation for selective synthesis of asymmetric polyhydroquinolines through a one-pot multi-component condensation reaction of various substituted arylaldehyde, 5,5-dimethyl-1,3-cyclohexanedione, ammonium acetate and ethyl acetoacetate under solvent-free conventional heating in relatively short reaction times. The developed catalysts were easily recycled and reutilized at least three times under optimized reaction conditions with no noticeable decline in their initial catalytic activities. Operational simplicity and environmental compatibility, combined with the application of a reusable and affordable heterogeneous catalyst, significant efficiency, relatively short reaction time, and good yield are among the main characteristics of the proposed synthetic approach.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Novel 2D Ultrathin Nanoribbons Cd-Ag-MOF@ZnO Composite as Organo-Nanocatalyst for Preparation of Polyhydroquinoline Heterocycles\",\"authors\":\"\",\"doi\":\"10.1080/10406638.2023.2261596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Novel ultrathin Cd-Ag-MOF@ZnO composite nanoribbons (Ut-Nr Cd-Ag-MOF@ZnO C) were prepared and characterized in this research to serve as organocatalyst in Hantzsch condensation for selective synthesis of asymmetric polyhydroquinolines through a one-pot multi-component condensation reaction of various substituted arylaldehyde, 5,5-dimethyl-1,3-cyclohexanedione, ammonium acetate and ethyl acetoacetate under solvent-free conventional heating in relatively short reaction times. The developed catalysts were easily recycled and reutilized at least three times under optimized reaction conditions with no noticeable decline in their initial catalytic activities. Operational simplicity and environmental compatibility, combined with the application of a reusable and affordable heterogeneous catalyst, significant efficiency, relatively short reaction time, and good yield are among the main characteristics of the proposed synthetic approach.</div></div>\",\"PeriodicalId\":20303,\"journal\":{\"name\":\"Polycyclic Aromatic Compounds\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polycyclic Aromatic Compounds\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1040663823020432\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1040663823020432","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Synthesis and Characterization of Novel 2D Ultrathin Nanoribbons Cd-Ag-MOF@ZnO Composite as Organo-Nanocatalyst for Preparation of Polyhydroquinoline Heterocycles
Novel ultrathin Cd-Ag-MOF@ZnO composite nanoribbons (Ut-Nr Cd-Ag-MOF@ZnO C) were prepared and characterized in this research to serve as organocatalyst in Hantzsch condensation for selective synthesis of asymmetric polyhydroquinolines through a one-pot multi-component condensation reaction of various substituted arylaldehyde, 5,5-dimethyl-1,3-cyclohexanedione, ammonium acetate and ethyl acetoacetate under solvent-free conventional heating in relatively short reaction times. The developed catalysts were easily recycled and reutilized at least three times under optimized reaction conditions with no noticeable decline in their initial catalytic activities. Operational simplicity and environmental compatibility, combined with the application of a reusable and affordable heterogeneous catalyst, significant efficiency, relatively short reaction time, and good yield are among the main characteristics of the proposed synthetic approach.
期刊介绍:
The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.