强可约性的低度性质和极大集的计算能力

IF 0.3 Q4 MATHEMATICS, APPLIED
Klaus Ambos-Spies, Rod Downey, Martin Monath
{"title":"强可约性的低度性质和极大集的计算能力","authors":"Klaus Ambos-Spies, Rod Downey, Martin Monath","doi":"10.3233/com-220432","DOIUrl":null,"url":null,"abstract":"We introduce the notion of eventually uniformly weak truth table array computable (e.u.wtt-a.c.) sets. As our main result, we show that a computably enumerable (c.e.) set has this property iff it is weak truth table ( wtt-) reducible to a maximal set. Moreover, in this equivalence we may replace maximal sets by quasi-maximal sets, hyperhypersimple sets or dense simple sets and we may replace wtt-reducibility by identity-bounded Turing reducibility (or any intermediate reducibility). Here, a set A is e.u.wtt-a.c. if there is an effective procedure which, for any given partial wtt-functional Φ ˆ, yields a computable approximation g ( x , s ) of the domain of Φ ˆ A together with a computable indicator function k ( x , s ) and a computable order h ( x ) such that, once the indicator becomes positive, i.e., k ( x , s ) = 1, the number of the mind changes of the approximation g on x after stage s is bounded by h ( x ) where, for total Φ ˆ A , the indicator eventually becomes positive on almost all arguments x of Φ ˆ A . In addition to our main result, we show several properties of the computably enumerable e.u.wtt-a.c. sets. For instance, the class of these sets is closed downwards under wtt-reductions and closed under join. Moreover, we relate this class to – and separate it from – well known classes in the literature. On the one hand, the class of the wtt-degrees of the c.e. e.u.wtt-a.c. sets is strictly contained in the class of the array computable c.e. wtt-degrees. On the other hand, every bounded low set is e.u.wtt-a.c. but there are e.u.wtt-a.c. c.e. sets which are not bounded low. Here a set A is bounded low if A † ⩽ wtt ∅ † , i.e., if A † is ω-c.a., where A † is the wtt-jump of A (Anderson, Csima and Lange (Archive for Mathematical Logic 56(5–6) (2017) 507–521)). Finally, we prove that there is a strict hierarchy within the class of the bounded low c.e. sets A depending on the order h that bounds the number of mind changes of a computable approximation of A † , and we show that there exists a Turing complete set A such that A † is h-c.a. for any computable order h with h ( 0 ) > 0.","PeriodicalId":42452,"journal":{"name":"Computability-The Journal of the Association CiE","volume":"292 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lowness properties for strong reducibilities and the computational power of maximal sets\",\"authors\":\"Klaus Ambos-Spies, Rod Downey, Martin Monath\",\"doi\":\"10.3233/com-220432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of eventually uniformly weak truth table array computable (e.u.wtt-a.c.) sets. As our main result, we show that a computably enumerable (c.e.) set has this property iff it is weak truth table ( wtt-) reducible to a maximal set. Moreover, in this equivalence we may replace maximal sets by quasi-maximal sets, hyperhypersimple sets or dense simple sets and we may replace wtt-reducibility by identity-bounded Turing reducibility (or any intermediate reducibility). Here, a set A is e.u.wtt-a.c. if there is an effective procedure which, for any given partial wtt-functional Φ ˆ, yields a computable approximation g ( x , s ) of the domain of Φ ˆ A together with a computable indicator function k ( x , s ) and a computable order h ( x ) such that, once the indicator becomes positive, i.e., k ( x , s ) = 1, the number of the mind changes of the approximation g on x after stage s is bounded by h ( x ) where, for total Φ ˆ A , the indicator eventually becomes positive on almost all arguments x of Φ ˆ A . In addition to our main result, we show several properties of the computably enumerable e.u.wtt-a.c. sets. For instance, the class of these sets is closed downwards under wtt-reductions and closed under join. Moreover, we relate this class to – and separate it from – well known classes in the literature. On the one hand, the class of the wtt-degrees of the c.e. e.u.wtt-a.c. sets is strictly contained in the class of the array computable c.e. wtt-degrees. On the other hand, every bounded low set is e.u.wtt-a.c. but there are e.u.wtt-a.c. c.e. sets which are not bounded low. Here a set A is bounded low if A † ⩽ wtt ∅ † , i.e., if A † is ω-c.a., where A † is the wtt-jump of A (Anderson, Csima and Lange (Archive for Mathematical Logic 56(5–6) (2017) 507–521)). Finally, we prove that there is a strict hierarchy within the class of the bounded low c.e. sets A depending on the order h that bounds the number of mind changes of a computable approximation of A † , and we show that there exists a Turing complete set A such that A † is h-c.a. for any computable order h with h ( 0 ) > 0.\",\"PeriodicalId\":42452,\"journal\":{\"name\":\"Computability-The Journal of the Association CiE\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computability-The Journal of the Association CiE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/com-220432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computability-The Journal of the Association CiE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/com-220432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了最终一致弱真值表数组可计算集的概念。作为我们的主要结果,我们证明了一个可计算枚举集(c.e)如果是弱真值表(wtt-)可约为极大集就具有这个性质。此外,在这个等价中,我们可以用拟极大集、超超简单集或密集简单集代替极大集,也可以用单位有界图灵可约性(或任何中间可约性)代替wtt可约性。这里,集合a是e.u wtt- ac。如果有一个有效的过程,对于任何给定的部分wtt-functionalΦˆ,产生一个可计算的近似g (x, s)域的Φˆ连同一个可计算的指标函数k (x,年代)和一个可计算的h (x),这样,一旦指标变得积极,也就是说,k (x) = 1,心灵的数量变化的x在舞台上近似g s以h (x)为界,总Φˆ,该指标最终对Φ * A的几乎所有参数x都变为正值。除了我们的主要结果之外,我们还展示了可计算枚举e.u.t -a.c的几个性质。集。例如,这些集合的类在wtt-约简下是向下闭的,在连接下是闭的。此外,我们将这类与文献中著名的类联系起来,并将其分开。一方面,cce的wtt度的类。set严格包含在可计算数组的类中,例如wtt-degrees。另一方面,每一个有界的低集都是e.u wtt-a.c。但也有e.u.wtt- ac。非低有界的集合。在这里,如果a†≥wtt∅†,即a†为ω- ca,则集合a有界为低。,其中A†为A (Anderson, Csima and Lange (Archive for Mathematical Logic 56(5-6)(2017) 507-521))的wtt-jump。最后,我们证明了在有界低c.e.集合a类中存在一个严格的层次结构,该层次结构依赖于约束a†的可计算近似的思想变化数的阶数h,并且我们证明了存在一个图灵完备集a,使得a†为h-c.a。对于h (0) >0.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lowness properties for strong reducibilities and the computational power of maximal sets
We introduce the notion of eventually uniformly weak truth table array computable (e.u.wtt-a.c.) sets. As our main result, we show that a computably enumerable (c.e.) set has this property iff it is weak truth table ( wtt-) reducible to a maximal set. Moreover, in this equivalence we may replace maximal sets by quasi-maximal sets, hyperhypersimple sets or dense simple sets and we may replace wtt-reducibility by identity-bounded Turing reducibility (or any intermediate reducibility). Here, a set A is e.u.wtt-a.c. if there is an effective procedure which, for any given partial wtt-functional Φ ˆ, yields a computable approximation g ( x , s ) of the domain of Φ ˆ A together with a computable indicator function k ( x , s ) and a computable order h ( x ) such that, once the indicator becomes positive, i.e., k ( x , s ) = 1, the number of the mind changes of the approximation g on x after stage s is bounded by h ( x ) where, for total Φ ˆ A , the indicator eventually becomes positive on almost all arguments x of Φ ˆ A . In addition to our main result, we show several properties of the computably enumerable e.u.wtt-a.c. sets. For instance, the class of these sets is closed downwards under wtt-reductions and closed under join. Moreover, we relate this class to – and separate it from – well known classes in the literature. On the one hand, the class of the wtt-degrees of the c.e. e.u.wtt-a.c. sets is strictly contained in the class of the array computable c.e. wtt-degrees. On the other hand, every bounded low set is e.u.wtt-a.c. but there are e.u.wtt-a.c. c.e. sets which are not bounded low. Here a set A is bounded low if A † ⩽ wtt ∅ † , i.e., if A † is ω-c.a., where A † is the wtt-jump of A (Anderson, Csima and Lange (Archive for Mathematical Logic 56(5–6) (2017) 507–521)). Finally, we prove that there is a strict hierarchy within the class of the bounded low c.e. sets A depending on the order h that bounds the number of mind changes of a computable approximation of A † , and we show that there exists a Turing complete set A such that A † is h-c.a. for any computable order h with h ( 0 ) > 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信