矩阵加权Kolmogorov-Riesz紧性定理

IF 0.8 3区 数学 Q2 MATHEMATICS
Shenyu Liu, Dongyong Yang, Ciqiang Zhuo
{"title":"矩阵加权Kolmogorov-Riesz紧性定理","authors":"Shenyu Liu, Dongyong Yang, Ciqiang Zhuo","doi":"10.1007/s11464-021-0103-x","DOIUrl":null,"url":null,"abstract":"In this paper, several versions of the Kolmogorov–Riesz compactness theorem in weighted Lebesgue spaces with matrix weights are obtained. In particular, when the matrix weight W is in the known Ap class, a characterization of totally bounded subsets in Lp(W) with p ∈ (1, ∞) is established.","PeriodicalId":50429,"journal":{"name":"Frontiers of Mathematics in China","volume":"43 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Matrix Weighted Kolmogorov–Riesz’s Compactness Theorem\",\"authors\":\"Shenyu Liu, Dongyong Yang, Ciqiang Zhuo\",\"doi\":\"10.1007/s11464-021-0103-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, several versions of the Kolmogorov–Riesz compactness theorem in weighted Lebesgue spaces with matrix weights are obtained. In particular, when the matrix weight W is in the known Ap class, a characterization of totally bounded subsets in Lp(W) with p ∈ (1, ∞) is established.\",\"PeriodicalId\":50429,\"journal\":{\"name\":\"Frontiers of Mathematics in China\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Mathematics in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11464-021-0103-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Mathematics in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11464-021-0103-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了具有矩阵权值的加权Lebesgue空间中Kolmogorov-Riesz紧性定理的几个版本。特别地,当矩阵权值W在已知的Ap类中时,建立了Lp(W)中p∈(1,∞)的全有界子集的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix Weighted Kolmogorov–Riesz’s Compactness Theorem
In this paper, several versions of the Kolmogorov–Riesz compactness theorem in weighted Lebesgue spaces with matrix weights are obtained. In particular, when the matrix weight W is in the known Ap class, a characterization of totally bounded subsets in Lp(W) with p ∈ (1, ∞) is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
703
审稿时长
6-12 weeks
期刊介绍: Frontiers of Mathematics in China provides a forum for a broad blend of peer-reviewed scholarly papers in order to promote rapid communication of mathematical developments. It reflects the enormous advances that are currently being made in the field of mathematics. The subject areas featured include all main branches of mathematics, both pure and applied. In addition to core areas (such as geometry, algebra, topology, number theory, real and complex function theory, functional analysis, probability theory, combinatorics and graph theory, dynamical systems and differential equations), applied areas (such as statistics, computational mathematics, numerical analysis, mathematical biology, mathematical finance and the like) will also be selected. The journal especially encourages papers in developing and promising fields as well as papers showing the interaction between different areas of mathematics, or the interaction between mathematics and science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信