对小的极端冲击的急剧收缩估计

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
William Golding, Sam Krupa, Alexis Vasseur
{"title":"对小的极端冲击的急剧收缩估计","authors":"William Golding, Sam Krupa, Alexis Vasseur","doi":"10.1142/s0219891623500170","DOIUrl":null,"url":null,"abstract":"In this paper, we study the [Formula: see text]-contraction property of small extremal shocks for 1-d systems of hyperbolic conservation laws endowed with a single convex entropy, when subjected to large perturbations. We show that the weight coefficient [Formula: see text] can be chosen with amplitude proportional to the size of the shock. The main result of this paper is a key building block in the companion paper [G. Chen, S. G. Krupa and A. F. Vasseur, Uniqueness and weak-BV stability for [Formula: see text] conservation laws, Arch. Ration. Mech. Anal. 246(1) (2022) 299–332] in which uniqueness and BV-weak stability results for [Formula: see text] systems of hyperbolic conservation laws are proved.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":"3 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sharp a-contraction estimates for small extremal shocks\",\"authors\":\"William Golding, Sam Krupa, Alexis Vasseur\",\"doi\":\"10.1142/s0219891623500170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the [Formula: see text]-contraction property of small extremal shocks for 1-d systems of hyperbolic conservation laws endowed with a single convex entropy, when subjected to large perturbations. We show that the weight coefficient [Formula: see text] can be chosen with amplitude proportional to the size of the shock. The main result of this paper is a key building block in the companion paper [G. Chen, S. G. Krupa and A. F. Vasseur, Uniqueness and weak-BV stability for [Formula: see text] conservation laws, Arch. Ration. Mech. Anal. 246(1) (2022) 299–332] in which uniqueness and BV-weak stability results for [Formula: see text] systems of hyperbolic conservation laws are proved.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219891623500170\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219891623500170","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们研究了具有单一凸熵的双曲守恒律的一维系统在受到大扰动时的小极值激波的收缩性质。我们表明,权重系数[公式:见文]可以选择与冲击大小成比例的振幅。本文的主要结果是同伴论文[G.]中的关键组成部分。陈绍光、陈志强,守恒律的唯一性和弱bv稳定性[公式:见文本],第3期。配给。动力机械。其中证明了双曲守恒律系统的唯一性和bv -弱稳定性结果[公式:见文本]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp a-contraction estimates for small extremal shocks
In this paper, we study the [Formula: see text]-contraction property of small extremal shocks for 1-d systems of hyperbolic conservation laws endowed with a single convex entropy, when subjected to large perturbations. We show that the weight coefficient [Formula: see text] can be chosen with amplitude proportional to the size of the shock. The main result of this paper is a key building block in the companion paper [G. Chen, S. G. Krupa and A. F. Vasseur, Uniqueness and weak-BV stability for [Formula: see text] conservation laws, Arch. Ration. Mech. Anal. 246(1) (2022) 299–332] in which uniqueness and BV-weak stability results for [Formula: see text] systems of hyperbolic conservation laws are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hyperbolic Differential Equations
Journal of Hyperbolic Differential Equations 数学-物理:数学物理
CiteScore
1.10
自引率
0.00%
发文量
15
审稿时长
24 months
期刊介绍: This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in: Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions. Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc. Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations. Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc. General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations. Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信