交叉的家族没有独特的影子

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Peter Frankl, Jian Wang
{"title":"交叉的家族没有独特的影子","authors":"Peter Frankl, Jian Wang","doi":"10.1017/s0963548323000305","DOIUrl":null,"url":null,"abstract":"Abstract Let $\\mathcal{F}$ be an intersecting family. A $(k-1)$ -set $E$ is called a unique shadow if it is contained in exactly one member of $\\mathcal{F}$ . Let ${\\mathcal{A}}=\\{A\\in \\binom{[n]}{k}\\colon |A\\cap \\{1,2,3\\}|\\geq 2\\}$ . In the present paper, we show that for $n\\geq 28k$ , $\\mathcal{A}$ is the unique family attaining the maximum size among all intersecting families without unique shadow. Several other results of a similar flavour are established as well.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":"43 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intersecting families without unique shadow\",\"authors\":\"Peter Frankl, Jian Wang\",\"doi\":\"10.1017/s0963548323000305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $\\\\mathcal{F}$ be an intersecting family. A $(k-1)$ -set $E$ is called a unique shadow if it is contained in exactly one member of $\\\\mathcal{F}$ . Let ${\\\\mathcal{A}}=\\\\{A\\\\in \\\\binom{[n]}{k}\\\\colon |A\\\\cap \\\\{1,2,3\\\\}|\\\\geq 2\\\\}$ . In the present paper, we show that for $n\\\\geq 28k$ , $\\\\mathcal{A}$ is the unique family attaining the maximum size among all intersecting families without unique shadow. Several other results of a similar flavour are established as well.\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000305\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000305","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

让$\mathcal{F}$成为一个交叉的家庭。如果一个$(k-1)$ -set $E$恰好包含在$\mathcal{F}$的一个成员中,则它被称为唯一影子。让${\mathcal{A}}=\{A\in \binom{[n]}{k}\colon |A\cap \{1,2,3\}|\geq 2\}$。在本文中,我们证明了对于$n\geq 28k$, $\mathcal{A}$是在没有唯一阴影的所有相交族中达到最大大小的唯一族。其他几个类似味道的结果也得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersecting families without unique shadow
Abstract Let $\mathcal{F}$ be an intersecting family. A $(k-1)$ -set $E$ is called a unique shadow if it is contained in exactly one member of $\mathcal{F}$ . Let ${\mathcal{A}}=\{A\in \binom{[n]}{k}\colon |A\cap \{1,2,3\}|\geq 2\}$ . In the present paper, we show that for $n\geq 28k$ , $\mathcal{A}$ is the unique family attaining the maximum size among all intersecting families without unique shadow. Several other results of a similar flavour are established as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信