{"title":"Malykhin最大拓扑群上的可数网络","authors":"Edgar Márquez","doi":"10.4995/agt.2023.18517","DOIUrl":null,"url":null,"abstract":"We present a solution to the following problem: Does every countable and non-discrete topological (Abelian) group have a countable network with infinite elements? In fact, we show that no maximal topological space allows for a countable network with infinite elements. As a result, we answer the question in the negative. The article also focuses on Malykhin's maximal topological group constructed in 1975 and establishes some unusual properties of countable networks on this special group G. We show, in particular, that for every countable network N for G, the family of finite elements of N is also a network for G.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"4 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Countable networks on Malykhin's maximal topological group\",\"authors\":\"Edgar Márquez\",\"doi\":\"10.4995/agt.2023.18517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a solution to the following problem: Does every countable and non-discrete topological (Abelian) group have a countable network with infinite elements? In fact, we show that no maximal topological space allows for a countable network with infinite elements. As a result, we answer the question in the negative. The article also focuses on Malykhin's maximal topological group constructed in 1975 and establishes some unusual properties of countable networks on this special group G. We show, in particular, that for every countable network N for G, the family of finite elements of N is also a network for G.\",\"PeriodicalId\":8046,\"journal\":{\"name\":\"Applied general topology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied general topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/agt.2023.18517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2023.18517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Countable networks on Malykhin's maximal topological group
We present a solution to the following problem: Does every countable and non-discrete topological (Abelian) group have a countable network with infinite elements? In fact, we show that no maximal topological space allows for a countable network with infinite elements. As a result, we answer the question in the negative. The article also focuses on Malykhin's maximal topological group constructed in 1975 and establishes some unusual properties of countable networks on this special group G. We show, in particular, that for every countable network N for G, the family of finite elements of N is also a network for G.
期刊介绍:
The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.