扩展莱特超几何矩阵函数及其性质

IF 0.7 Q2 MATHEMATICS
Halil GEZER, Cem KAANOGLU
{"title":"扩展莱特超几何矩阵函数及其性质","authors":"Halil GEZER, Cem KAANOGLU","doi":"10.31801/cfsuasmas.1147745","DOIUrl":null,"url":null,"abstract":"Recently, Bakhet et al. [9] presented the Wright hypergeometric matrix function $_{2}R_{1}^{(\\tau )}(A,B;C;z)$ and derived several properties. Abdalla [6] has since applied fractional operators to this function. In this paper, with the help of the generalized Pochhammer matrix symbol $(A;B)_{n}$ and the generalized beta matrix function $\\mathcal{B}(P,Q;\\mathbb{X})$, we introduce and study an extended form of the Wright hypergeometric matrix function, $_{2}R_{1}^{(\\tau )}((A,\\mathbb{A}),B;C;z;\\mathbb{X}).$ We establish several potentially useful results for this extended form, such as integral representations and fractional derivatives. We also derive some properties of the corresponding incomplete extended Wright hypergeometric matrix function.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":"338 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the extended Wright hypergeometric matrix function and its properties\",\"authors\":\"Halil GEZER, Cem KAANOGLU\",\"doi\":\"10.31801/cfsuasmas.1147745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Bakhet et al. [9] presented the Wright hypergeometric matrix function $_{2}R_{1}^{(\\\\tau )}(A,B;C;z)$ and derived several properties. Abdalla [6] has since applied fractional operators to this function. In this paper, with the help of the generalized Pochhammer matrix symbol $(A;B)_{n}$ and the generalized beta matrix function $\\\\mathcal{B}(P,Q;\\\\mathbb{X})$, we introduce and study an extended form of the Wright hypergeometric matrix function, $_{2}R_{1}^{(\\\\tau )}((A,\\\\mathbb{A}),B;C;z;\\\\mathbb{X}).$ We establish several potentially useful results for this extended form, such as integral representations and fractional derivatives. We also derive some properties of the corresponding incomplete extended Wright hypergeometric matrix function.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\"338 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1147745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1147745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Bakhet等人[9]提出了Wright超几何矩阵函数$_{2}R_{1}^{(\tau)}(A,B;C;z)$,并推导出若干性质。此后,Abdalla[6]将分数算子应用于该函数。本文利用广义Pochhammer矩阵符号$(A;B)_{n}$和广义β矩阵函数$\mathcal{B}(P,Q;\mathbb{X})$,引入并研究了Wright超几何矩阵函数$_{2}R_{1}^{(\tau)}((A,\mathbb{A}),B;C;z;\mathbb{X})的一个扩展形式。我们为这个扩展形式建立了几个可能有用的结果,如积分表示和分数阶导数。并给出了相应的不完全扩展莱特超几何矩阵函数的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the extended Wright hypergeometric matrix function and its properties
Recently, Bakhet et al. [9] presented the Wright hypergeometric matrix function $_{2}R_{1}^{(\tau )}(A,B;C;z)$ and derived several properties. Abdalla [6] has since applied fractional operators to this function. In this paper, with the help of the generalized Pochhammer matrix symbol $(A;B)_{n}$ and the generalized beta matrix function $\mathcal{B}(P,Q;\mathbb{X})$, we introduce and study an extended form of the Wright hypergeometric matrix function, $_{2}R_{1}^{(\tau )}((A,\mathbb{A}),B;C;z;\mathbb{X}).$ We establish several potentially useful results for this extended form, such as integral representations and fractional derivatives. We also derive some properties of the corresponding incomplete extended Wright hypergeometric matrix function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信