使用量子前向纠错抑制通信错误

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
Ivan A. Burenkov, N. Fajar R. Annafianto, M. V. Jabir, Abdella Battou, Sergey V. Polyakov
{"title":"使用量子前向纠错抑制通信错误","authors":"Ivan A. Burenkov, N. Fajar R. Annafianto, M. V. Jabir, Abdella Battou, Sergey V. Polyakov","doi":"10.1116/5.0164396","DOIUrl":null,"url":null,"abstract":"Because noise is inherent to all measurements, optical communication requires error identification and correction to protect and recover user data. Yet, error correction, routinely used in classical receivers, has not been applied to receivers that take advantage of quantum measurement. Here, we show how information uniquely available in a quantum measurement can be employed for efficient error correction. Our quantum-enabled forward error correction protocol operates on quadrature phase shift keying (QPSK) and achieves more than 80 dB error suppression compared to the raw symbol error rate and approximately 40 dB improvement of symbol error rates beyond the QPSK classical limit. With a symbol error rate below 10−9 for just 11 photons per bit, this approach enables reliable use of quantum receivers for ultra-low power optical communications. Limiting optical power improves the information capacity of optical links and enables scalable networks with coexisting quantum and classical channels in the same optical fiber.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":"54 1","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Suppressing communication errors using quantum-enabled forward error correction\",\"authors\":\"Ivan A. Burenkov, N. Fajar R. Annafianto, M. V. Jabir, Abdella Battou, Sergey V. Polyakov\",\"doi\":\"10.1116/5.0164396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because noise is inherent to all measurements, optical communication requires error identification and correction to protect and recover user data. Yet, error correction, routinely used in classical receivers, has not been applied to receivers that take advantage of quantum measurement. Here, we show how information uniquely available in a quantum measurement can be employed for efficient error correction. Our quantum-enabled forward error correction protocol operates on quadrature phase shift keying (QPSK) and achieves more than 80 dB error suppression compared to the raw symbol error rate and approximately 40 dB improvement of symbol error rates beyond the QPSK classical limit. With a symbol error rate below 10−9 for just 11 photons per bit, this approach enables reliable use of quantum receivers for ultra-low power optical communications. Limiting optical power improves the information capacity of optical links and enables scalable networks with coexisting quantum and classical channels in the same optical fiber.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0164396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0164396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

由于噪声是固有的所有测量,光通信需要错误识别和纠正,以保护和恢复用户数据。然而,在经典接收器中常规使用的纠错,并没有应用于利用量子测量的接收器。在这里,我们展示了如何在量子测量中唯一可用的信息可以用于有效的纠错。我们的量子前向纠错协议在正交相移键控(QPSK)上运行,与原始符号错误率相比,实现了超过80 dB的错误抑制,并且在QPSK经典限制之外,符号错误率提高了约40 dB。由于符号错误率低于10−9,每比特只有11个光子,这种方法可以可靠地使用量子接收器进行超低功率光通信。限制光功率可以提高光链路的信息容量,实现量子信道和经典信道在同一光纤中共存的可扩展网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppressing communication errors using quantum-enabled forward error correction
Because noise is inherent to all measurements, optical communication requires error identification and correction to protect and recover user data. Yet, error correction, routinely used in classical receivers, has not been applied to receivers that take advantage of quantum measurement. Here, we show how information uniquely available in a quantum measurement can be employed for efficient error correction. Our quantum-enabled forward error correction protocol operates on quadrature phase shift keying (QPSK) and achieves more than 80 dB error suppression compared to the raw symbol error rate and approximately 40 dB improvement of symbol error rates beyond the QPSK classical limit. With a symbol error rate below 10−9 for just 11 photons per bit, this approach enables reliable use of quantum receivers for ultra-low power optical communications. Limiting optical power improves the information capacity of optical links and enables scalable networks with coexisting quantum and classical channels in the same optical fiber.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信