测试深时潮汐模型模拟的地质代用物

IF 1.9 3区 地球科学 Q1 GEOLOGY
B. Guo, L. A. M. Fitzgerald, J. M. Hewitt, O. Pampaloni, J. A. M. Green
{"title":"测试深时潮汐模型模拟的地质代用物","authors":"B. Guo, L. A. M. Fitzgerald, J. M. Hewitt, O. Pampaloni, J. A. M. Green","doi":"10.1002/dep2.256","DOIUrl":null,"url":null,"abstract":"Abstract Tides are a key driver of a range of Earth system processes, and we now have the capacity to simulate tidal dynamics on a range of temporal and spatial scales. Deep‐time tidal model simulations have been used to provide insight into past ocean circulation patterns, evolution of life and the developments of the Earth‐Moon system's orbital configuration. However, these tidal model simulations are relatively poorly constrained and validated because of a lack of readily available proxies. The feasibility of using two types of proxy is explored here; (1) sedimentary deposits which can directly estimate palaeotidal ranges, and (2) black shale, to constrain three palaeotidal model simulations for different time slices. Specifically, three palaeotidal range proxies were used for the early Devonian (400 Ma), three palaeotidal range proxies and five black shales for the lower Jurassic (185 Ma), and eight black shales for the early Cretaceous (95 Ma). Both tidal proxies confirm the tidal model results in most locations. The model results for 400 Ma and 185 Ma matched 2/3 of the palaeotidal range proxies for each of these periods. The locations of black shale were compared with tidal front locations predicted by the model outputs based on the Simpson–Hunter parameter and the model results from 95 to 185 Ma agree with the black shale proxies in 10/13 of the locations. In the cases where there is a disagreement, the model resolution is probably too low to fully resolve the details of the coastal topography, or—in one case—the palaeobathymetry is incorrect. Consequently, it is argued that it is worth expanding this type of work, and that such data can be used to validate both models and reconstructions.","PeriodicalId":54144,"journal":{"name":"Depositional Record","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing geological proxies for deep‐time tidal model simulations\",\"authors\":\"B. Guo, L. A. M. Fitzgerald, J. M. Hewitt, O. Pampaloni, J. A. M. Green\",\"doi\":\"10.1002/dep2.256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Tides are a key driver of a range of Earth system processes, and we now have the capacity to simulate tidal dynamics on a range of temporal and spatial scales. Deep‐time tidal model simulations have been used to provide insight into past ocean circulation patterns, evolution of life and the developments of the Earth‐Moon system's orbital configuration. However, these tidal model simulations are relatively poorly constrained and validated because of a lack of readily available proxies. The feasibility of using two types of proxy is explored here; (1) sedimentary deposits which can directly estimate palaeotidal ranges, and (2) black shale, to constrain three palaeotidal model simulations for different time slices. Specifically, three palaeotidal range proxies were used for the early Devonian (400 Ma), three palaeotidal range proxies and five black shales for the lower Jurassic (185 Ma), and eight black shales for the early Cretaceous (95 Ma). Both tidal proxies confirm the tidal model results in most locations. The model results for 400 Ma and 185 Ma matched 2/3 of the palaeotidal range proxies for each of these periods. The locations of black shale were compared with tidal front locations predicted by the model outputs based on the Simpson–Hunter parameter and the model results from 95 to 185 Ma agree with the black shale proxies in 10/13 of the locations. In the cases where there is a disagreement, the model resolution is probably too low to fully resolve the details of the coastal topography, or—in one case—the palaeobathymetry is incorrect. Consequently, it is argued that it is worth expanding this type of work, and that such data can be used to validate both models and reconstructions.\",\"PeriodicalId\":54144,\"journal\":{\"name\":\"Depositional Record\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Depositional Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/dep2.256\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Depositional Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/dep2.256","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

潮汐是一系列地球系统过程的关键驱动力,我们现在有能力在一系列时间和空间尺度上模拟潮汐动力学。深时潮汐模型模拟已被用于深入了解过去的海洋环流模式、生命的进化和地月系统轨道结构的发展。然而,由于缺乏现成的代理,这些潮汐模型模拟的约束和验证相对较差。探讨了使用两种代理的可行性;(1)可直接估算古潮差的沉积矿床;(2)黑色页岩,以约束不同时间片的三种古潮差模型模拟。其中,早泥盆世(400 Ma)用了3个古潮差代用物,下侏罗统(185 Ma)用了3个古潮差代用物和5个黑色页岩代用物,早白垩世(95 Ma)用了8个黑色页岩代用物。这两种潮汐代用品在大多数地点都证实了潮汐模式的结果。400 Ma和185 Ma的模型结果与这两个时期2/3的古潮差代用物相匹配。对比了基于Simpson-Hunter参数的模型输出预测的潮锋位置,95 ~ 185 Ma的模型结果与10/13个位置的黑色页岩代理结果一致。在存在分歧的情况下,模型分辨率可能太低,无法完全解决海岸地形的细节,或者在一种情况下,古水深测量是不正确的。因此,有人认为扩展这种类型的工作是值得的,并且这些数据可以用来验证模型和重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing geological proxies for deep‐time tidal model simulations
Abstract Tides are a key driver of a range of Earth system processes, and we now have the capacity to simulate tidal dynamics on a range of temporal and spatial scales. Deep‐time tidal model simulations have been used to provide insight into past ocean circulation patterns, evolution of life and the developments of the Earth‐Moon system's orbital configuration. However, these tidal model simulations are relatively poorly constrained and validated because of a lack of readily available proxies. The feasibility of using two types of proxy is explored here; (1) sedimentary deposits which can directly estimate palaeotidal ranges, and (2) black shale, to constrain three palaeotidal model simulations for different time slices. Specifically, three palaeotidal range proxies were used for the early Devonian (400 Ma), three palaeotidal range proxies and five black shales for the lower Jurassic (185 Ma), and eight black shales for the early Cretaceous (95 Ma). Both tidal proxies confirm the tidal model results in most locations. The model results for 400 Ma and 185 Ma matched 2/3 of the palaeotidal range proxies for each of these periods. The locations of black shale were compared with tidal front locations predicted by the model outputs based on the Simpson–Hunter parameter and the model results from 95 to 185 Ma agree with the black shale proxies in 10/13 of the locations. In the cases where there is a disagreement, the model resolution is probably too low to fully resolve the details of the coastal topography, or—in one case—the palaeobathymetry is incorrect. Consequently, it is argued that it is worth expanding this type of work, and that such data can be used to validate both models and reconstructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
16.70%
发文量
42
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信