前端人工智能vs后端人工智能:生成式人工智能时代确保通信真实性的新框架

IF 1.5 Q2 COMMUNICATION
Donggyu Kim, Jungwon Kong
{"title":"前端人工智能vs后端人工智能:生成式人工智能时代确保通信真实性的新框架","authors":"Donggyu Kim, Jungwon Kong","doi":"10.3389/fcomm.2023.1243474","DOIUrl":null,"url":null,"abstract":"The proliferation of artificial intelligence (AI) in digital platforms has complicated the concept of truth in communication studies. The article presents the dichotomic framework of Front-end AI and Back-end AI to tackle the complexity of distinguishing truth. Front-end AI refers to AI technology used up-front, often as the face of a product or service, challenging the authenticity and truthfulness of content. In contrast, Back-end AI refers to AI technology used behind the scenes, which can generate misleading or biased content without disclosing its AI-generated nature. Addressing these challenges requires different approaches, such as verification and ethical guidelines for Front-end AI and algorithmic transparency, bias detection, and human oversight for Back-end AI.","PeriodicalId":31739,"journal":{"name":"Frontiers in Communication","volume":"6 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Front-end AI vs. Back-end AI: new framework for securing truth in communication during the generative AI era\",\"authors\":\"Donggyu Kim, Jungwon Kong\",\"doi\":\"10.3389/fcomm.2023.1243474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of artificial intelligence (AI) in digital platforms has complicated the concept of truth in communication studies. The article presents the dichotomic framework of Front-end AI and Back-end AI to tackle the complexity of distinguishing truth. Front-end AI refers to AI technology used up-front, often as the face of a product or service, challenging the authenticity and truthfulness of content. In contrast, Back-end AI refers to AI technology used behind the scenes, which can generate misleading or biased content without disclosing its AI-generated nature. Addressing these challenges requires different approaches, such as verification and ethical guidelines for Front-end AI and algorithmic transparency, bias detection, and human oversight for Back-end AI.\",\"PeriodicalId\":31739,\"journal\":{\"name\":\"Frontiers in Communication\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcomm.2023.1243474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcomm.2023.1243474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

摘要

数字平台上人工智能(AI)的激增使传播学中的真理概念变得复杂。本文提出了前端人工智能和后端人工智能的二分框架,以解决识别真理的复杂性。前端人工智能指的是预先使用的人工智能技术,通常作为产品或服务的面孔,挑战内容的真实性和真实性。相比之下,后端人工智能是指在幕后使用的人工智能技术,它可以在不暴露其人工智能生成性质的情况下生成误导性或有偏见的内容。应对这些挑战需要不同的方法,例如前端人工智能和算法透明度的验证和道德准则,偏见检测以及后端人工智能的人为监督。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Front-end AI vs. Back-end AI: new framework for securing truth in communication during the generative AI era
The proliferation of artificial intelligence (AI) in digital platforms has complicated the concept of truth in communication studies. The article presents the dichotomic framework of Front-end AI and Back-end AI to tackle the complexity of distinguishing truth. Front-end AI refers to AI technology used up-front, often as the face of a product or service, challenging the authenticity and truthfulness of content. In contrast, Back-end AI refers to AI technology used behind the scenes, which can generate misleading or biased content without disclosing its AI-generated nature. Addressing these challenges requires different approaches, such as verification and ethical guidelines for Front-end AI and algorithmic transparency, bias detection, and human oversight for Back-end AI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
8.30%
发文量
284
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信