Rituraj Shukla, Deepak Khare, Anuj Kumar Dwivedi, Ramesh Pal Rudra, Santosh S. Palmate, C. S. P. Ojha, Vijay P. Singh
{"title":"评估统计降尺度模式在预测未来气候变化情景中的性能","authors":"Rituraj Shukla, Deepak Khare, Anuj Kumar Dwivedi, Ramesh Pal Rudra, Santosh S. Palmate, C. S. P. Ojha, Vijay P. Singh","doi":"10.2166/wcc.2023.207","DOIUrl":null,"url":null,"abstract":"Abstract Statistical downscaling (SD) is preferable to dynamic downscaling to derive local-scale climate change information from large-scale datasets. Many statistical downscaling models are available these days, but comparison of their performance is still inadequately addressed for choosing a reliable SD model. Thus, it is desirable to compare the performance of SD models to ensure their adaptability in future climate studies. In this study, a statistical downscaling model (SDSM) or multi-linear regression and the Least Square Support Vector Machine (LS-SVM) were used to do downscaling and compare the results with those obtained from general circulation model (GCM) for identifying the best SD model for the Indira Sagar Canal Command area located in Madhya Pradesh, India. The GCM, Hadley Centre Coupled Model version 3 (HadCM3), was utilized to extract and downscale precipitation, maximum temperature (Tmax), and minimum temperature (Tmin) for 1961–2001 and then for 2001–2099. Before future projections, both SD models were initially calibrated (1961–1990) and validated (1991–2001) to evaluate their performance for precipitation and temperature variables at all gauge stations, namely Barwani, East Nimar, and West Nimar. Results showed that the precipitation trend was under-predicted owing to large errors in downscaling, while temperature was over-predicted by SD models.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":"48 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of statistical downscaling model's performance in projecting future climate change scenarios\",\"authors\":\"Rituraj Shukla, Deepak Khare, Anuj Kumar Dwivedi, Ramesh Pal Rudra, Santosh S. Palmate, C. S. P. Ojha, Vijay P. Singh\",\"doi\":\"10.2166/wcc.2023.207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Statistical downscaling (SD) is preferable to dynamic downscaling to derive local-scale climate change information from large-scale datasets. Many statistical downscaling models are available these days, but comparison of their performance is still inadequately addressed for choosing a reliable SD model. Thus, it is desirable to compare the performance of SD models to ensure their adaptability in future climate studies. In this study, a statistical downscaling model (SDSM) or multi-linear regression and the Least Square Support Vector Machine (LS-SVM) were used to do downscaling and compare the results with those obtained from general circulation model (GCM) for identifying the best SD model for the Indira Sagar Canal Command area located in Madhya Pradesh, India. The GCM, Hadley Centre Coupled Model version 3 (HadCM3), was utilized to extract and downscale precipitation, maximum temperature (Tmax), and minimum temperature (Tmin) for 1961–2001 and then for 2001–2099. Before future projections, both SD models were initially calibrated (1961–1990) and validated (1991–2001) to evaluate their performance for precipitation and temperature variables at all gauge stations, namely Barwani, East Nimar, and West Nimar. Results showed that the precipitation trend was under-predicted owing to large errors in downscaling, while temperature was over-predicted by SD models.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.207\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.207","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Evaluation of statistical downscaling model's performance in projecting future climate change scenarios
Abstract Statistical downscaling (SD) is preferable to dynamic downscaling to derive local-scale climate change information from large-scale datasets. Many statistical downscaling models are available these days, but comparison of their performance is still inadequately addressed for choosing a reliable SD model. Thus, it is desirable to compare the performance of SD models to ensure their adaptability in future climate studies. In this study, a statistical downscaling model (SDSM) or multi-linear regression and the Least Square Support Vector Machine (LS-SVM) were used to do downscaling and compare the results with those obtained from general circulation model (GCM) for identifying the best SD model for the Indira Sagar Canal Command area located in Madhya Pradesh, India. The GCM, Hadley Centre Coupled Model version 3 (HadCM3), was utilized to extract and downscale precipitation, maximum temperature (Tmax), and minimum temperature (Tmin) for 1961–2001 and then for 2001–2099. Before future projections, both SD models were initially calibrated (1961–1990) and validated (1991–2001) to evaluate their performance for precipitation and temperature variables at all gauge stations, namely Barwani, East Nimar, and West Nimar. Results showed that the precipitation trend was under-predicted owing to large errors in downscaling, while temperature was over-predicted by SD models.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.