具有反馈和批泊松到达的重审排队系统的渐近扩散分析

Anatoly A. Nazarov, Svetlana V. Rozhkova, Ekaterina Yu. Titarenko
{"title":"具有反馈和批泊松到达的重审排队系统的渐近扩散分析","authors":"Anatoly A. Nazarov, Svetlana V. Rozhkova, Ekaterina Yu. Titarenko","doi":"10.22363/2658-4670-2023-31-3-205-217","DOIUrl":null,"url":null,"abstract":"The mathematical model of the retrial queuing system \\(M^{[n]}/M/1\\) with feedback and batch Poisson arrival is constructed. Customers arrive in groups. If the server is free, one of the arriving customers starts his service, the rest join the orbit. The retrial and service times are exponentially distributed. The customer whose service is completed leaves the system, or reservice, or goes to the orbit. The method of asymptotic diffusion analysis is proposed for finding the probability distribution of the number of customers in orbit. The asymptotic condition is growing average waiting time in orbit. The accuracy of the diffusion approximation is obtained.","PeriodicalId":34192,"journal":{"name":"Discrete and Continuous Models and Applied Computational Science","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic diffusion analysis of the retrial queuing system with feedback and batch Poisson arrival\",\"authors\":\"Anatoly A. Nazarov, Svetlana V. Rozhkova, Ekaterina Yu. Titarenko\",\"doi\":\"10.22363/2658-4670-2023-31-3-205-217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mathematical model of the retrial queuing system \\\\(M^{[n]}/M/1\\\\) with feedback and batch Poisson arrival is constructed. Customers arrive in groups. If the server is free, one of the arriving customers starts his service, the rest join the orbit. The retrial and service times are exponentially distributed. The customer whose service is completed leaves the system, or reservice, or goes to the orbit. The method of asymptotic diffusion analysis is proposed for finding the probability distribution of the number of customers in orbit. The asymptotic condition is growing average waiting time in orbit. The accuracy of the diffusion approximation is obtained.\",\"PeriodicalId\":34192,\"journal\":{\"name\":\"Discrete and Continuous Models and Applied Computational Science\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Models and Applied Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/2658-4670-2023-31-3-205-217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Models and Applied Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2658-4670-2023-31-3-205-217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立了具有反馈和批泊松到达的重审排队系统\(M^{[n]}/M/1\)的数学模型。顾客成群结队地来。如果服务器空闲,其中一个到达的客户开始他的服务,其余的加入轨道。重审和服务时间呈指数分布。服务完成的客户离开系统,或重新服务,或进入轨道。提出了一种求轨道上顾客数量的概率分布的渐近扩散分析法。渐近条件是轨道平均等待时间的增长。得到了扩散近似的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic diffusion analysis of the retrial queuing system with feedback and batch Poisson arrival
The mathematical model of the retrial queuing system \(M^{[n]}/M/1\) with feedback and batch Poisson arrival is constructed. Customers arrive in groups. If the server is free, one of the arriving customers starts his service, the rest join the orbit. The retrial and service times are exponentially distributed. The customer whose service is completed leaves the system, or reservice, or goes to the orbit. The method of asymptotic diffusion analysis is proposed for finding the probability distribution of the number of customers in orbit. The asymptotic condition is growing average waiting time in orbit. The accuracy of the diffusion approximation is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
20
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信