{"title":"制作微型人造纤毛","authors":"Charles Day","doi":"10.1103/physics.16.156","DOIUrl":null,"url":null,"abstract":"T he single-celled parameciumwhizzes through its aqueous habitat at a rate of 10 times its length a second, thanks to the coordinated undulation of hair-like structures, called cilia. Cilia are also found in human lungs where their motion helps to clear out mucus. Researchers in microfluidics would like to mimic cilia’s fluid-shifting ability for novel devices, but they have had trouble creating artificial cilia at the microscale. Now Jaap den Toonder of Eindhoven University of Technology in the Netherlands and his collaborators have demonstratedminiaturized artificial cilia that perform like real ones [1]. What’s more, their experiments clarified which aspects of the cilia’s motion are responsible for","PeriodicalId":20136,"journal":{"name":"Physics","volume":"43 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Making Miniature Artificial Cilia\",\"authors\":\"Charles Day\",\"doi\":\"10.1103/physics.16.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"T he single-celled parameciumwhizzes through its aqueous habitat at a rate of 10 times its length a second, thanks to the coordinated undulation of hair-like structures, called cilia. Cilia are also found in human lungs where their motion helps to clear out mucus. Researchers in microfluidics would like to mimic cilia’s fluid-shifting ability for novel devices, but they have had trouble creating artificial cilia at the microscale. Now Jaap den Toonder of Eindhoven University of Technology in the Netherlands and his collaborators have demonstratedminiaturized artificial cilia that perform like real ones [1]. What’s more, their experiments clarified which aspects of the cilia’s motion are responsible for\",\"PeriodicalId\":20136,\"journal\":{\"name\":\"Physics\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physics.16.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physics.16.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
T he single-celled parameciumwhizzes through its aqueous habitat at a rate of 10 times its length a second, thanks to the coordinated undulation of hair-like structures, called cilia. Cilia are also found in human lungs where their motion helps to clear out mucus. Researchers in microfluidics would like to mimic cilia’s fluid-shifting ability for novel devices, but they have had trouble creating artificial cilia at the microscale. Now Jaap den Toonder of Eindhoven University of Technology in the Netherlands and his collaborators have demonstratedminiaturized artificial cilia that perform like real ones [1]. What’s more, their experiments clarified which aspects of the cilia’s motion are responsible for