{"title":"《绝地求生》手机版在Google Play Store的应用","authors":"Alex Sander P. Braja, Achmad Kodar","doi":"10.51213/jimp.v7i3.779","DOIUrl":null,"url":null,"abstract":"Game online adalah salah satu hal yang paling relevan untuk beradaptasi dengan teknologi internet. PUBG Mobile adalah salah satu game online terpopuler di Indonesia, telah diunduh lebih dari 500 juta kali dengan 41,8 juta ulasan pengguna pada tahun 2022 di Google Play. Ulasan pengguna memainkan peran penting dalam keberhasilan pengembangan aplikasi. Ulasan pengguna berupa teks dalam format data tidak terstruktur yang menimbulkan kerumitan saat bekerja dengan analisis sentimen. Ada sebuah pendekatan baru yang disebut BERT. BERT Ini model transfer-learning memperkenalkan model pre-training yang diperlukan untuk lebih baik dalam representasi konteks tekstual. Penelitian ini menguji kinerja BERT untuk analisis sentimen menggunakan dua model pre-training. Kami menggunakan model pre-training IndoBERT BASE dan BERT BASE Multilingual. Data yang digunakan adalah ulasan pengguna untuk aplikasi PUBG Mobile di Google Play Store. Kami juga melakukan pengaturan hyperparameter untuk menemukan model pencarian yang optimal menggunakan dua pendekatan pelabelan data: pelabelan berbasis skor dan pelabelan berbasis TextBlob untuk menentukan efisiensi model. Hasil percobaan menunjukkan bahwa model fine-tuned IndoBERT memiliki akurasi yang lebih baik dalam pelabelan data berbasis Textblob dengan akurasi tertinggi 94 % pada learning rate 0.00002, batch size 32, jumlah epoch 5, dan waktu pelatihan 12 menit.","PeriodicalId":484241,"journal":{"name":"JIMP (Jurnal Informatika Merdeka Pasuruan)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementasi Fine-Tuning BERT untuk Analisis Sentimen terhadap Review Aplikasi PUBG Mobile di Google Play Store\",\"authors\":\"Alex Sander P. Braja, Achmad Kodar\",\"doi\":\"10.51213/jimp.v7i3.779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Game online adalah salah satu hal yang paling relevan untuk beradaptasi dengan teknologi internet. PUBG Mobile adalah salah satu game online terpopuler di Indonesia, telah diunduh lebih dari 500 juta kali dengan 41,8 juta ulasan pengguna pada tahun 2022 di Google Play. Ulasan pengguna memainkan peran penting dalam keberhasilan pengembangan aplikasi. Ulasan pengguna berupa teks dalam format data tidak terstruktur yang menimbulkan kerumitan saat bekerja dengan analisis sentimen. Ada sebuah pendekatan baru yang disebut BERT. BERT Ini model transfer-learning memperkenalkan model pre-training yang diperlukan untuk lebih baik dalam representasi konteks tekstual. Penelitian ini menguji kinerja BERT untuk analisis sentimen menggunakan dua model pre-training. Kami menggunakan model pre-training IndoBERT BASE dan BERT BASE Multilingual. Data yang digunakan adalah ulasan pengguna untuk aplikasi PUBG Mobile di Google Play Store. Kami juga melakukan pengaturan hyperparameter untuk menemukan model pencarian yang optimal menggunakan dua pendekatan pelabelan data: pelabelan berbasis skor dan pelabelan berbasis TextBlob untuk menentukan efisiensi model. Hasil percobaan menunjukkan bahwa model fine-tuned IndoBERT memiliki akurasi yang lebih baik dalam pelabelan data berbasis Textblob dengan akurasi tertinggi 94 % pada learning rate 0.00002, batch size 32, jumlah epoch 5, dan waktu pelatihan 12 menit.\",\"PeriodicalId\":484241,\"journal\":{\"name\":\"JIMP (Jurnal Informatika Merdeka Pasuruan)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIMP (Jurnal Informatika Merdeka Pasuruan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51213/jimp.v7i3.779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIMP (Jurnal Informatika Merdeka Pasuruan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51213/jimp.v7i3.779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementasi Fine-Tuning BERT untuk Analisis Sentimen terhadap Review Aplikasi PUBG Mobile di Google Play Store
Game online adalah salah satu hal yang paling relevan untuk beradaptasi dengan teknologi internet. PUBG Mobile adalah salah satu game online terpopuler di Indonesia, telah diunduh lebih dari 500 juta kali dengan 41,8 juta ulasan pengguna pada tahun 2022 di Google Play. Ulasan pengguna memainkan peran penting dalam keberhasilan pengembangan aplikasi. Ulasan pengguna berupa teks dalam format data tidak terstruktur yang menimbulkan kerumitan saat bekerja dengan analisis sentimen. Ada sebuah pendekatan baru yang disebut BERT. BERT Ini model transfer-learning memperkenalkan model pre-training yang diperlukan untuk lebih baik dalam representasi konteks tekstual. Penelitian ini menguji kinerja BERT untuk analisis sentimen menggunakan dua model pre-training. Kami menggunakan model pre-training IndoBERT BASE dan BERT BASE Multilingual. Data yang digunakan adalah ulasan pengguna untuk aplikasi PUBG Mobile di Google Play Store. Kami juga melakukan pengaturan hyperparameter untuk menemukan model pencarian yang optimal menggunakan dua pendekatan pelabelan data: pelabelan berbasis skor dan pelabelan berbasis TextBlob untuk menentukan efisiensi model. Hasil percobaan menunjukkan bahwa model fine-tuned IndoBERT memiliki akurasi yang lebih baik dalam pelabelan data berbasis Textblob dengan akurasi tertinggi 94 % pada learning rate 0.00002, batch size 32, jumlah epoch 5, dan waktu pelatihan 12 menit.