基于深度神经网络的农田边界自动测绘

Artur Gafurov
{"title":"基于深度神经网络的农田边界自动测绘","authors":"Artur Gafurov","doi":"10.3390/agriengineering5030097","DOIUrl":null,"url":null,"abstract":"Accurately identifying the boundaries of agricultural land is critical to the effective management of its resources. This includes the determination of property and land rights, the prevention of non-agricultural activities on agricultural land, and the effective management of natural resources. There are various methods for accurate boundary detection, including traditional measurement methods and remote sensing, and the choice of the best method depends on specific objectives and conditions. This paper proposes the use of convolutional neural networks (CNNs) as an efficient and effective tool for the automatic recognition of agricultural land boundaries. The objective of this research paper is to develop an automated method for the recognition of agricultural land boundaries using deep neural networks and Sentinel 2 multispectral imagery. The Buinsky district of the Republic of Tatarstan, Russia, which is known to be an agricultural region, was chosen for this study because of the importance of the accurate detection of its agricultural land boundaries. Linknet, a deep neural network architecture with skip connections between encoder and decoder, was used for semantic segmentation to extract arable land boundaries, and transfer learning using a pre-trained EfficientNetB3 model was used to improve performance. The Linknet + EfficientNetB3 combination for semantic segmentation achieved an accuracy of 86.3% and an f1 measure of 0.924 on the validation sample. The results showed a high degree of agreement between the predicted field boundaries and the expert-validated boundaries. According to the results, the advantages of the method include its speed, scalability, and ability to detect patterns outside the study area. It is planned to improve the method by using different neural network architectures and prior recognized land use classes.","PeriodicalId":7846,"journal":{"name":"AgriEngineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Mapping of Cropland Boundaries Using Deep Neural Networks\",\"authors\":\"Artur Gafurov\",\"doi\":\"10.3390/agriengineering5030097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately identifying the boundaries of agricultural land is critical to the effective management of its resources. This includes the determination of property and land rights, the prevention of non-agricultural activities on agricultural land, and the effective management of natural resources. There are various methods for accurate boundary detection, including traditional measurement methods and remote sensing, and the choice of the best method depends on specific objectives and conditions. This paper proposes the use of convolutional neural networks (CNNs) as an efficient and effective tool for the automatic recognition of agricultural land boundaries. The objective of this research paper is to develop an automated method for the recognition of agricultural land boundaries using deep neural networks and Sentinel 2 multispectral imagery. The Buinsky district of the Republic of Tatarstan, Russia, which is known to be an agricultural region, was chosen for this study because of the importance of the accurate detection of its agricultural land boundaries. Linknet, a deep neural network architecture with skip connections between encoder and decoder, was used for semantic segmentation to extract arable land boundaries, and transfer learning using a pre-trained EfficientNetB3 model was used to improve performance. The Linknet + EfficientNetB3 combination for semantic segmentation achieved an accuracy of 86.3% and an f1 measure of 0.924 on the validation sample. The results showed a high degree of agreement between the predicted field boundaries and the expert-validated boundaries. According to the results, the advantages of the method include its speed, scalability, and ability to detect patterns outside the study area. It is planned to improve the method by using different neural network architectures and prior recognized land use classes.\",\"PeriodicalId\":7846,\"journal\":{\"name\":\"AgriEngineering\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriengineering5030097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriengineering5030097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确识别农地边界对有效管理农地资源至关重要。这包括确定财产和土地权利,防止在农业用地上进行非农业活动,以及有效管理自然资源。精确的边界检测方法多种多样,包括传统的测量方法和遥感方法,选择最佳方法取决于具体的目标和条件。本文提出将卷积神经网络(cnn)作为农业用地边界自动识别的有效工具。本研究的目的是开发一种利用深度神经网络和Sentinel 2多光谱图像自动识别农业用地边界的方法。俄罗斯鞑靼斯坦共和国的布恩斯基区是一个农业区,之所以选择它进行这项研究,是因为准确检测其农业用地边界的重要性。采用深度神经网络结构Linknet进行语义分割,提取耕地边界;采用预训练的effentnetb3模型进行迁移学习,提高性能。用于语义分割的Linknet + effentnetb3组合在验证样本上实现了86.3%的准确率和0.924的f1度量。结果表明,预测的场边界与专家验证的边界之间高度一致。结果表明,该方法的优点包括速度快、可扩展性强、能够检测研究区域以外的模式。计划通过使用不同的神经网络架构和先前识别的土地利用类别来改进该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Mapping of Cropland Boundaries Using Deep Neural Networks
Accurately identifying the boundaries of agricultural land is critical to the effective management of its resources. This includes the determination of property and land rights, the prevention of non-agricultural activities on agricultural land, and the effective management of natural resources. There are various methods for accurate boundary detection, including traditional measurement methods and remote sensing, and the choice of the best method depends on specific objectives and conditions. This paper proposes the use of convolutional neural networks (CNNs) as an efficient and effective tool for the automatic recognition of agricultural land boundaries. The objective of this research paper is to develop an automated method for the recognition of agricultural land boundaries using deep neural networks and Sentinel 2 multispectral imagery. The Buinsky district of the Republic of Tatarstan, Russia, which is known to be an agricultural region, was chosen for this study because of the importance of the accurate detection of its agricultural land boundaries. Linknet, a deep neural network architecture with skip connections between encoder and decoder, was used for semantic segmentation to extract arable land boundaries, and transfer learning using a pre-trained EfficientNetB3 model was used to improve performance. The Linknet + EfficientNetB3 combination for semantic segmentation achieved an accuracy of 86.3% and an f1 measure of 0.924 on the validation sample. The results showed a high degree of agreement between the predicted field boundaries and the expert-validated boundaries. According to the results, the advantages of the method include its speed, scalability, and ability to detect patterns outside the study area. It is planned to improve the method by using different neural network architectures and prior recognized land use classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信