引力波的Hodge-de Rham拉普拉斯准则和几何准则

Olga V. Babourova, Boris N. Frolov
{"title":"引力波的Hodge-de Rham拉普拉斯准则和几何准则","authors":"Olga V. Babourova, Boris N. Frolov","doi":"10.22363/2658-4670-2023-31-3-242-246","DOIUrl":null,"url":null,"abstract":"The curvature tensor \\(\\hat{R}\\) of a manifold is called harmonic, if it obeys the condition \\(\\Delta^{\\text{(HR)}}\\hat{R}=0\\), where \\(\\Delta^{\\text{(HR)}}=DD^{\\ast} +
 D^{\\ast}D\\) is the Hodge–deRham Laplacian. It is proved that all solutions of the Einstein equations in vacuum, as well as all solutions of the Einstein–Cartan theory in vacuum have a harmonic curvature. The statement that only solutions of Einstein’s equations of type \\(N\\) (describing gravitational radiation) are harmonic is refuted.","PeriodicalId":34192,"journal":{"name":"Discrete and Continuous Models and Applied Computational Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hodge-de Rham Laplacian and geometric criteria for gravitational waves\",\"authors\":\"Olga V. Babourova, Boris N. Frolov\",\"doi\":\"10.22363/2658-4670-2023-31-3-242-246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The curvature tensor \\\\(\\\\hat{R}\\\\) of a manifold is called harmonic, if it obeys the condition \\\\(\\\\Delta^{\\\\text{(HR)}}\\\\hat{R}=0\\\\), where \\\\(\\\\Delta^{\\\\text{(HR)}}=DD^{\\\\ast} +
 D^{\\\\ast}D\\\\) is the Hodge–deRham Laplacian. It is proved that all solutions of the Einstein equations in vacuum, as well as all solutions of the Einstein–Cartan theory in vacuum have a harmonic curvature. The statement that only solutions of Einstein’s equations of type \\\\(N\\\\) (describing gravitational radiation) are harmonic is refuted.\",\"PeriodicalId\":34192,\"journal\":{\"name\":\"Discrete and Continuous Models and Applied Computational Science\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Models and Applied Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/2658-4670-2023-31-3-242-246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Models and Applied Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2658-4670-2023-31-3-242-246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流形的曲率张量\(\hat{R}\)被称为调和张量,如果它满足条件\(\Delta^{\text{(HR)}}\hat{R}=0\),其中\(\Delta^{\text{(HR)}}=DD^{\ast} + D^{\ast}D\)是霍奇-德拉姆拉普拉斯量。证明了爱因斯坦方程在真空中的所有解,以及爱因斯坦-卡坦理论在真空中的所有解都具有调和曲率。只有爱因斯坦方程\(N\)(描述引力辐射)的解是调和的说法被驳斥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hodge-de Rham Laplacian and geometric criteria for gravitational waves
The curvature tensor \(\hat{R}\) of a manifold is called harmonic, if it obeys the condition \(\Delta^{\text{(HR)}}\hat{R}=0\), where \(\Delta^{\text{(HR)}}=DD^{\ast} + D^{\ast}D\) is the Hodge–deRham Laplacian. It is proved that all solutions of the Einstein equations in vacuum, as well as all solutions of the Einstein–Cartan theory in vacuum have a harmonic curvature. The statement that only solutions of Einstein’s equations of type \(N\) (describing gravitational radiation) are harmonic is refuted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
20
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信