{"title":"基于稳定扩散模型的脑机交互建模","authors":"Eugeny Yu. Shchetinin","doi":"10.22363/2658-4670-2023-31-3-273-281","DOIUrl":null,"url":null,"abstract":"This paper investigates neurotechnologies for developing brain-computer interaction (BCI) based on the generative deep learning Stable Diffusion model. An algorithm for modeling BCI is proposed and its training and testing on artificial data is described. The results are encouraging researchers and can be used in various areas of BCI, such as distance learning, remote medicine and the creation of robotic humanoids, etc.","PeriodicalId":34192,"journal":{"name":"Discrete and Continuous Models and Applied Computational Science","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain-computer interaction modeling based on the stable diffusion model\",\"authors\":\"Eugeny Yu. Shchetinin\",\"doi\":\"10.22363/2658-4670-2023-31-3-273-281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates neurotechnologies for developing brain-computer interaction (BCI) based on the generative deep learning Stable Diffusion model. An algorithm for modeling BCI is proposed and its training and testing on artificial data is described. The results are encouraging researchers and can be used in various areas of BCI, such as distance learning, remote medicine and the creation of robotic humanoids, etc.\",\"PeriodicalId\":34192,\"journal\":{\"name\":\"Discrete and Continuous Models and Applied Computational Science\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Models and Applied Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/2658-4670-2023-31-3-273-281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Models and Applied Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2658-4670-2023-31-3-273-281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brain-computer interaction modeling based on the stable diffusion model
This paper investigates neurotechnologies for developing brain-computer interaction (BCI) based on the generative deep learning Stable Diffusion model. An algorithm for modeling BCI is proposed and its training and testing on artificial data is described. The results are encouraging researchers and can be used in various areas of BCI, such as distance learning, remote medicine and the creation of robotic humanoids, etc.