{"title":"通过木材轮作扩展增加碳储量的现实潜力:对太平洋西北地区的分析","authors":"Nina A. Randazzo, Doria R. Gordon","doi":"10.1080/17583004.2023.2265154","DOIUrl":null,"url":null,"abstract":"Extensions of harvest rotation length are a commonly proposed method to increase carbon sequestration in forests that are managed for timber. However, several limitations constrain realistic storage potential in intensively managed forests. We present an analysis of the realistic potential for additional carbon sequestration via rotation extension across the Pacific Northwest of the United States, an important timber-producing region, taking into account specific limitations. We first assess the limitations on rotation length imposed by the stand age at which wood production would decline over the long term, and then incorporate the age at which trunk diameter surpasses a reasonable threshold for logging. Using publicly available forest survey data, we empirically model growth parameters across this region for use in this analysis. Despite uncertainties, we find some opportunities for rotation length extension in western Washington with variation by sub-region and timber species, emphasizing the importance of geography- and species-specific growth parameters for forest carbon management even within a general region. However, the total realistic potential for sequestration under this improved forest management scenario is small relative to gross emissions: the estimated cumulative additional sequestration in aboveground live biomass would offset one year of gross emissions in the case of Washington state, while a decadal-scale rotation extension implemented gradually over the landscape to avoid a total pause on commercial timber production would take on the scale of a century to achieve. Overall, practical considerations greatly limit the realistic potential of this carbon sequestration strategy.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":"51 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realistic potential increases in carbon storage via timber rotation extensions: an analysis of the Pacific Northwest\",\"authors\":\"Nina A. Randazzo, Doria R. Gordon\",\"doi\":\"10.1080/17583004.2023.2265154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensions of harvest rotation length are a commonly proposed method to increase carbon sequestration in forests that are managed for timber. However, several limitations constrain realistic storage potential in intensively managed forests. We present an analysis of the realistic potential for additional carbon sequestration via rotation extension across the Pacific Northwest of the United States, an important timber-producing region, taking into account specific limitations. We first assess the limitations on rotation length imposed by the stand age at which wood production would decline over the long term, and then incorporate the age at which trunk diameter surpasses a reasonable threshold for logging. Using publicly available forest survey data, we empirically model growth parameters across this region for use in this analysis. Despite uncertainties, we find some opportunities for rotation length extension in western Washington with variation by sub-region and timber species, emphasizing the importance of geography- and species-specific growth parameters for forest carbon management even within a general region. However, the total realistic potential for sequestration under this improved forest management scenario is small relative to gross emissions: the estimated cumulative additional sequestration in aboveground live biomass would offset one year of gross emissions in the case of Washington state, while a decadal-scale rotation extension implemented gradually over the landscape to avoid a total pause on commercial timber production would take on the scale of a century to achieve. Overall, practical considerations greatly limit the realistic potential of this carbon sequestration strategy.\",\"PeriodicalId\":48941,\"journal\":{\"name\":\"Carbon Management\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17583004.2023.2265154\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17583004.2023.2265154","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Realistic potential increases in carbon storage via timber rotation extensions: an analysis of the Pacific Northwest
Extensions of harvest rotation length are a commonly proposed method to increase carbon sequestration in forests that are managed for timber. However, several limitations constrain realistic storage potential in intensively managed forests. We present an analysis of the realistic potential for additional carbon sequestration via rotation extension across the Pacific Northwest of the United States, an important timber-producing region, taking into account specific limitations. We first assess the limitations on rotation length imposed by the stand age at which wood production would decline over the long term, and then incorporate the age at which trunk diameter surpasses a reasonable threshold for logging. Using publicly available forest survey data, we empirically model growth parameters across this region for use in this analysis. Despite uncertainties, we find some opportunities for rotation length extension in western Washington with variation by sub-region and timber species, emphasizing the importance of geography- and species-specific growth parameters for forest carbon management even within a general region. However, the total realistic potential for sequestration under this improved forest management scenario is small relative to gross emissions: the estimated cumulative additional sequestration in aboveground live biomass would offset one year of gross emissions in the case of Washington state, while a decadal-scale rotation extension implemented gradually over the landscape to avoid a total pause on commercial timber production would take on the scale of a century to achieve. Overall, practical considerations greatly limit the realistic potential of this carbon sequestration strategy.
期刊介绍:
Carbon Management is a scholarly peer-reviewed forum for insights from the diverse array of disciplines that enhance our understanding of carbon dioxide and other GHG interactions – from biology, ecology, chemistry and engineering to law, policy, economics and sociology.
The core aim of Carbon Management is it to examine the options and mechanisms for mitigating the causes and impacts of climate change, which includes mechanisms for reducing emissions and enhancing the removal of GHGs from the atmosphere, as well as metrics used to measure performance of options and mechanisms resulting from international treaties, domestic policies, local regulations, environmental markets, technologies, industrial efforts and consumer choices.
One key aim of the journal is to catalyse intellectual debate in an inclusive and scientific manner on the practical work of policy implementation related to the long-term effort of managing our global GHG emissions and impacts. Decisions made in the near future will have profound impacts on the global climate and biosphere. Carbon Management delivers research findings in an accessible format to inform decisions in the fields of research, education, management and environmental policy.