具有部分耗散的二维磁微极方程的大时间行为和稳定性

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Ming Li, Jianxia He
{"title":"具有部分耗散的二维磁微极方程的大时间行为和稳定性","authors":"Ming Li, Jianxia He","doi":"10.1007/s44198-023-00144-2","DOIUrl":null,"url":null,"abstract":"Abstract This paper is devoted to the stability and decay estimates of solutions to the two-dimensional magneto-micropolar fluid equations with partial dissipation. Firstly, focus on the 2D magneto-micropolar equation with only velocity dissipation and partial magnetic diffusion, we obtain the global existence of solutions with small initial in $$H^s({\\mathbb {R}}^2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> $$(s>1)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and by fully exploiting the special structure of the system and using the Fourier splitting methods, we establish the large time decay rates of solutions. Secondly, when the magnetic field has partial dissipation, we show the global existence of solutions with small initial data in $$\\dot{B}^0_{2,1}({\\mathbb {R}}^2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>0</mml:mn> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . In addition, we explore the decay rates of these global solutions are correspondingly established in $$\\dot{B}^m_{2,1}({\\mathbb {R}}^2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>m</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> with $$0 \\le m \\le s$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>m</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>s</mml:mi> </mml:mrow> </mml:math> , when the initial data belongs to the negative Sobolev space $$\\dot{H}^{-l}({\\mathbb {R}}^2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mover> <mml:mi>H</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>l</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> (for each $$0 \\le l <1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>l</mml:mi> <mml:mo><</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> ).","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"24 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Time Behavior and Stability for Two-Dimensional Magneto-Micropolar Equations with Partial Dissipation\",\"authors\":\"Ming Li, Jianxia He\",\"doi\":\"10.1007/s44198-023-00144-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is devoted to the stability and decay estimates of solutions to the two-dimensional magneto-micropolar fluid equations with partial dissipation. Firstly, focus on the 2D magneto-micropolar equation with only velocity dissipation and partial magnetic diffusion, we obtain the global existence of solutions with small initial in $$H^s({\\\\mathbb {R}}^2)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> $$(s>1)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and by fully exploiting the special structure of the system and using the Fourier splitting methods, we establish the large time decay rates of solutions. Secondly, when the magnetic field has partial dissipation, we show the global existence of solutions with small initial data in $$\\\\dot{B}^0_{2,1}({\\\\mathbb {R}}^2)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msubsup> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>0</mml:mn> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . In addition, we explore the decay rates of these global solutions are correspondingly established in $$\\\\dot{B}^m_{2,1}({\\\\mathbb {R}}^2)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msubsup> <mml:mover> <mml:mi>B</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>m</mml:mi> </mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> with $$0 \\\\le m \\\\le s$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>m</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>s</mml:mi> </mml:mrow> </mml:math> , when the initial data belongs to the negative Sobolev space $$\\\\dot{H}^{-l}({\\\\mathbb {R}}^2)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mover> <mml:mi>H</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>l</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> (for each $$0 \\\\le l <1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>l</mml:mi> <mml:mo><</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> ).\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-023-00144-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44198-023-00144-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究具有部分耗散的二维磁微极流体方程解的稳定性和衰减估计。首先,对只考虑速度耗散和部分磁扩散的二维磁微极方程,得到了在$$H^s({\mathbb {R}}^2)$$ H s (R 2) $$(s>1)$$ (s &gt;1),充分利用系统的特殊结构,利用傅里叶分裂方法,建立了解的大时间衰减率。其次,当磁场存在部分耗散时,我们在$$\dot{B}^0_{2,1}({\mathbb {R}}^2)$$ B˙2,10 (r2)中证明了具有小初始数据的解的整体存在性。此外,我们还探讨了当初始数据属于负Sobolev空间$$\dot{H}^{-l}({\mathbb {R}}^2)$$ H˙l (r2)时,这些全局解的衰减率对应地建立在$$\dot{B}^m_{2,1}({\mathbb {R}}^2)$$ B˙2,1 m (r2)中,$$0 \le m \le s$$ 0≤m≤s(对于每个$$0 \le l <1$$ 0≤l &lt;1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Time Behavior and Stability for Two-Dimensional Magneto-Micropolar Equations with Partial Dissipation
Abstract This paper is devoted to the stability and decay estimates of solutions to the two-dimensional magneto-micropolar fluid equations with partial dissipation. Firstly, focus on the 2D magneto-micropolar equation with only velocity dissipation and partial magnetic diffusion, we obtain the global existence of solutions with small initial in $$H^s({\mathbb {R}}^2)$$ H s ( R 2 ) $$(s>1)$$ ( s > 1 ) , and by fully exploiting the special structure of the system and using the Fourier splitting methods, we establish the large time decay rates of solutions. Secondly, when the magnetic field has partial dissipation, we show the global existence of solutions with small initial data in $$\dot{B}^0_{2,1}({\mathbb {R}}^2)$$ B ˙ 2 , 1 0 ( R 2 ) . In addition, we explore the decay rates of these global solutions are correspondingly established in $$\dot{B}^m_{2,1}({\mathbb {R}}^2)$$ B ˙ 2 , 1 m ( R 2 ) with $$0 \le m \le s$$ 0 m s , when the initial data belongs to the negative Sobolev space $$\dot{H}^{-l}({\mathbb {R}}^2)$$ H ˙ - l ( R 2 ) (for each $$0 \le l <1$$ 0 l < 1 ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信