Hao Jiang, Chuanzhen Li, Juanjuan Cai, Jingling Wang
{"title":"MNN4Rec:基于多视图新闻网络的关系感知新闻推荐方法","authors":"Hao Jiang, Chuanzhen Li, Juanjuan Cai, Jingling Wang","doi":"10.1177/01655515231182072","DOIUrl":null,"url":null,"abstract":"Personalised news recommendation comprises two crucial components: news understanding and user modelling. Previous studies have attempted to model news understanding and user interests using various internal news information and external knowledge graphs (KG). However, they have overlooked the collaborative function of the external KG and the internal information among diverse news and user behaviours, resulting in serious news cold-start problems and poor interpretability of user interests. To address these issues, this article proposes a novel approach called Relation-Aware Approach based on Multi-view News Network for News Recommendation (MNN4Rec). Specifically, MNN4Rec first constructs a Multi-view News Network (MNN), which includes candidate news and user-clicked news, and represents their exclusive multi-view information as heterogeneous nodes. Furthermore, we develop explicit and implicit news relationships and design a special sampling algorithm to search for news co-neighbours. We then use a novel dual-channel graph attention mechanism to obtain the fine-grained news understanding representation. Moreover, we construct explainable user interests by modelling the interaction of user-clicked news through the multi-headed self-attention mechanism in both semantic and relation levels. Finally, we match candidate news understanding with user interests to generate a prediction score for recommendation. Experimental results on Microsoft’s news data set MIND demonstrate that MNN4Rec outperforms existing news-recommendation methods while also mitigating the cold-start problem and enhancing the interpretability of user interests. Our code is available at https://github.com/JiangHaoPG11/MNN4Rec_code .","PeriodicalId":54796,"journal":{"name":"Journal of Information Science","volume":"37 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MNN4Rec: A relation-aware approach based on multi-view news network for news recommendation\",\"authors\":\"Hao Jiang, Chuanzhen Li, Juanjuan Cai, Jingling Wang\",\"doi\":\"10.1177/01655515231182072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalised news recommendation comprises two crucial components: news understanding and user modelling. Previous studies have attempted to model news understanding and user interests using various internal news information and external knowledge graphs (KG). However, they have overlooked the collaborative function of the external KG and the internal information among diverse news and user behaviours, resulting in serious news cold-start problems and poor interpretability of user interests. To address these issues, this article proposes a novel approach called Relation-Aware Approach based on Multi-view News Network for News Recommendation (MNN4Rec). Specifically, MNN4Rec first constructs a Multi-view News Network (MNN), which includes candidate news and user-clicked news, and represents their exclusive multi-view information as heterogeneous nodes. Furthermore, we develop explicit and implicit news relationships and design a special sampling algorithm to search for news co-neighbours. We then use a novel dual-channel graph attention mechanism to obtain the fine-grained news understanding representation. Moreover, we construct explainable user interests by modelling the interaction of user-clicked news through the multi-headed self-attention mechanism in both semantic and relation levels. Finally, we match candidate news understanding with user interests to generate a prediction score for recommendation. Experimental results on Microsoft’s news data set MIND demonstrate that MNN4Rec outperforms existing news-recommendation methods while also mitigating the cold-start problem and enhancing the interpretability of user interests. Our code is available at https://github.com/JiangHaoPG11/MNN4Rec_code .\",\"PeriodicalId\":54796,\"journal\":{\"name\":\"Journal of Information Science\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01655515231182072\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01655515231182072","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MNN4Rec: A relation-aware approach based on multi-view news network for news recommendation
Personalised news recommendation comprises two crucial components: news understanding and user modelling. Previous studies have attempted to model news understanding and user interests using various internal news information and external knowledge graphs (KG). However, they have overlooked the collaborative function of the external KG and the internal information among diverse news and user behaviours, resulting in serious news cold-start problems and poor interpretability of user interests. To address these issues, this article proposes a novel approach called Relation-Aware Approach based on Multi-view News Network for News Recommendation (MNN4Rec). Specifically, MNN4Rec first constructs a Multi-view News Network (MNN), which includes candidate news and user-clicked news, and represents their exclusive multi-view information as heterogeneous nodes. Furthermore, we develop explicit and implicit news relationships and design a special sampling algorithm to search for news co-neighbours. We then use a novel dual-channel graph attention mechanism to obtain the fine-grained news understanding representation. Moreover, we construct explainable user interests by modelling the interaction of user-clicked news through the multi-headed self-attention mechanism in both semantic and relation levels. Finally, we match candidate news understanding with user interests to generate a prediction score for recommendation. Experimental results on Microsoft’s news data set MIND demonstrate that MNN4Rec outperforms existing news-recommendation methods while also mitigating the cold-start problem and enhancing the interpretability of user interests. Our code is available at https://github.com/JiangHaoPG11/MNN4Rec_code .
期刊介绍:
The Journal of Information Science is a peer-reviewed international journal of high repute covering topics of interest to all those researching and working in the sciences of information and knowledge management. The Editors welcome material on any aspect of information science theory, policy, application or practice that will advance thinking in the field.