{"title":"考虑发动机退化和蠕变寿命消耗的推力再平衡延长发动机在翼时间","authors":"Rafael da Mota Chiavegatto, Yiguang Li","doi":"10.1115/1.4063791","DOIUrl":null,"url":null,"abstract":"Abstract Airlines have consistently attempted to lower their operational costs and improve aircraft availability by applying various technologies. Engine maintenance expenses are one of the most substantial costs for aircraft operations, accounting for around 30% of overall aircraft operational costs. So, maximizing aircraft TBO is crucial to lowering the costs. This paper presents a novel method of rebalancing the thrust of engines of an aircraft to maximize the time between overhaul of the aircraft considering the performance degradation and creep life consumption of the engines. The method is applied to a model aircraft fitted with two model engines similar to GE90 115B to test the feasibility of the method with one engine degraded and the other engine undegraded. The obtained results demonstrate that for the aircraft flying between London and Toronto with 5,000 nominal flight cycles given to the engines, the time on-wing of the degraded engine could drop from 5,000 to 2,460 flight days due to its HP turbine degradation (1% efficiency degradation 3% flow capacity degradation), causing the same level of drop of time between overhaul of the aircraft. The time on-wing of the degraded engine could increase from 2,460 flight days without thrust rebalance to 3,410 flight days with thrust rebalance, i. e. around 38.6% potential improvement for the time between overhaul of the aircraft at the expenses of increased creep life consumption rate of the clean engine. The proposed method could be applied to other aircraft and engines.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thrust Rebalance to Extend Engine Time On-Wing with Consideration of Engine Degradation and Creep Life Consumption\",\"authors\":\"Rafael da Mota Chiavegatto, Yiguang Li\",\"doi\":\"10.1115/1.4063791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Airlines have consistently attempted to lower their operational costs and improve aircraft availability by applying various technologies. Engine maintenance expenses are one of the most substantial costs for aircraft operations, accounting for around 30% of overall aircraft operational costs. So, maximizing aircraft TBO is crucial to lowering the costs. This paper presents a novel method of rebalancing the thrust of engines of an aircraft to maximize the time between overhaul of the aircraft considering the performance degradation and creep life consumption of the engines. The method is applied to a model aircraft fitted with two model engines similar to GE90 115B to test the feasibility of the method with one engine degraded and the other engine undegraded. The obtained results demonstrate that for the aircraft flying between London and Toronto with 5,000 nominal flight cycles given to the engines, the time on-wing of the degraded engine could drop from 5,000 to 2,460 flight days due to its HP turbine degradation (1% efficiency degradation 3% flow capacity degradation), causing the same level of drop of time between overhaul of the aircraft. The time on-wing of the degraded engine could increase from 2,460 flight days without thrust rebalance to 3,410 flight days with thrust rebalance, i. e. around 38.6% potential improvement for the time between overhaul of the aircraft at the expenses of increased creep life consumption rate of the clean engine. The proposed method could be applied to other aircraft and engines.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063791\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063791","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Thrust Rebalance to Extend Engine Time On-Wing with Consideration of Engine Degradation and Creep Life Consumption
Abstract Airlines have consistently attempted to lower their operational costs and improve aircraft availability by applying various technologies. Engine maintenance expenses are one of the most substantial costs for aircraft operations, accounting for around 30% of overall aircraft operational costs. So, maximizing aircraft TBO is crucial to lowering the costs. This paper presents a novel method of rebalancing the thrust of engines of an aircraft to maximize the time between overhaul of the aircraft considering the performance degradation and creep life consumption of the engines. The method is applied to a model aircraft fitted with two model engines similar to GE90 115B to test the feasibility of the method with one engine degraded and the other engine undegraded. The obtained results demonstrate that for the aircraft flying between London and Toronto with 5,000 nominal flight cycles given to the engines, the time on-wing of the degraded engine could drop from 5,000 to 2,460 flight days due to its HP turbine degradation (1% efficiency degradation 3% flow capacity degradation), causing the same level of drop of time between overhaul of the aircraft. The time on-wing of the degraded engine could increase from 2,460 flight days without thrust rebalance to 3,410 flight days with thrust rebalance, i. e. around 38.6% potential improvement for the time between overhaul of the aircraft at the expenses of increased creep life consumption rate of the clean engine. The proposed method could be applied to other aircraft and engines.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.