{"title":"考虑现场条件的日本浅层地壳和上地幔地震水平位移谱阻尼修正因子预测模型","authors":"Lili Kang, Yanxu Jiang, Hao Wu, John X. Zhao","doi":"10.1785/0120230092","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article presents damping modification factors (DMFs) for the horizontal component of the strong-motion records generated by the shallow crustal and upper-mantle earthquakes in Japan. This model can be used to scale a 5% damped design spectrum that does not associate with a known magnitude and rupture distance to obtain a design spectrum with the desirable damping ratios. Our previous study suggested that the site effect on DMF was significant, and we used site class as the site-effect parameter. We used a quadratic function of damping ratio in a natural logarithm scale to model the effect of damping ratios and we used fourth-order polynomials of the natural logarithm spectral period to present the effect of the spectral period when the spectral period is over 0.06 s. The between-event, between-site, and within-site standard deviations can be described by the linear function of the damping ratio in a natural logarithm scale. The between-event standard deviations are smaller than the within-event standard deviations and the between-site standard deviations are less than the within-site ones at many spectral periods. Reasonable displacement spectra can be obtained by using the DMF model from this study to scale the 5% damped displacement spectra. The differences in the DMF values from the three types of earthquakes are moderate at many spectral periods and the predicted DMF values from this study are similar to those from other studies at some spectral periods, but the differences are considerable at the other spectral periods. The variation trend of the DMF values suggests that the predicted DMF values may reach the theoretic value of 1.0 at some spectral periods over 5.0 s. Residual distribution analysis suggested that the bilinear function of magnitude and fault-top depth can be used in a model for scenario earthquakes.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"19 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Damping Modification Factor Prediction Model for Horizontal Displacement Spectrum from Shallow Crustal and Upper-Mantle Earthquakes in Japan Accounting for Site Conditions\",\"authors\":\"Lili Kang, Yanxu Jiang, Hao Wu, John X. Zhao\",\"doi\":\"10.1785/0120230092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This article presents damping modification factors (DMFs) for the horizontal component of the strong-motion records generated by the shallow crustal and upper-mantle earthquakes in Japan. This model can be used to scale a 5% damped design spectrum that does not associate with a known magnitude and rupture distance to obtain a design spectrum with the desirable damping ratios. Our previous study suggested that the site effect on DMF was significant, and we used site class as the site-effect parameter. We used a quadratic function of damping ratio in a natural logarithm scale to model the effect of damping ratios and we used fourth-order polynomials of the natural logarithm spectral period to present the effect of the spectral period when the spectral period is over 0.06 s. The between-event, between-site, and within-site standard deviations can be described by the linear function of the damping ratio in a natural logarithm scale. The between-event standard deviations are smaller than the within-event standard deviations and the between-site standard deviations are less than the within-site ones at many spectral periods. Reasonable displacement spectra can be obtained by using the DMF model from this study to scale the 5% damped displacement spectra. The differences in the DMF values from the three types of earthquakes are moderate at many spectral periods and the predicted DMF values from this study are similar to those from other studies at some spectral periods, but the differences are considerable at the other spectral periods. The variation trend of the DMF values suggests that the predicted DMF values may reach the theoretic value of 1.0 at some spectral periods over 5.0 s. Residual distribution analysis suggested that the bilinear function of magnitude and fault-top depth can be used in a model for scenario earthquakes.\",\"PeriodicalId\":9444,\"journal\":{\"name\":\"Bulletin of the Seismological Society of America\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Seismological Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0120230092\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0120230092","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A Damping Modification Factor Prediction Model for Horizontal Displacement Spectrum from Shallow Crustal and Upper-Mantle Earthquakes in Japan Accounting for Site Conditions
ABSTRACT This article presents damping modification factors (DMFs) for the horizontal component of the strong-motion records generated by the shallow crustal and upper-mantle earthquakes in Japan. This model can be used to scale a 5% damped design spectrum that does not associate with a known magnitude and rupture distance to obtain a design spectrum with the desirable damping ratios. Our previous study suggested that the site effect on DMF was significant, and we used site class as the site-effect parameter. We used a quadratic function of damping ratio in a natural logarithm scale to model the effect of damping ratios and we used fourth-order polynomials of the natural logarithm spectral period to present the effect of the spectral period when the spectral period is over 0.06 s. The between-event, between-site, and within-site standard deviations can be described by the linear function of the damping ratio in a natural logarithm scale. The between-event standard deviations are smaller than the within-event standard deviations and the between-site standard deviations are less than the within-site ones at many spectral periods. Reasonable displacement spectra can be obtained by using the DMF model from this study to scale the 5% damped displacement spectra. The differences in the DMF values from the three types of earthquakes are moderate at many spectral periods and the predicted DMF values from this study are similar to those from other studies at some spectral periods, but the differences are considerable at the other spectral periods. The variation trend of the DMF values suggests that the predicted DMF values may reach the theoretic value of 1.0 at some spectral periods over 5.0 s. Residual distribution analysis suggested that the bilinear function of magnitude and fault-top depth can be used in a model for scenario earthquakes.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.