{"title":"合成复合杂化阳离子交换剂去除水中重金属离子的动力学研究","authors":"Raghu Raja Pandiyan Kuppusamy, Yashwanth Padarthi","doi":"10.1080/00194506.2023.2268081","DOIUrl":null,"url":null,"abstract":"ABSTRACTHybrid organic–inorganic materials make it possible to combine beneficial organic and inorganic properties into a single molecular-scale composite. In this study, the removal efficiency of synthesized organic–inorganic hybrid cation exchanger: nylon-6,6, Zr (IV) phosphate with respect to Cu2+, Zn2+ and Cd2+ has been investigated in order to take into account its potential use to clean up wastewaters from heavy metals. Metal concentrations in solution of 0.02 and 0.2 mol/L were used in the batch technique. For both lower and higher initial concentration, the process was fitting to both first and pseudo-first-order-kinetic model, while it is also consistent with the intra-particle diffusion model. Particle diffusion is the rate-limiting step in the multistep process that is primarily controlled by external mass transfer. Moderate activation energy values confirmed that the process is a combination of both physisorption and chemisorption. The order of removal may be presented as Cu2+ > Zn2+ > Cd2+.KEYWORDS: Heavy metalnylon-6,6, Zr (IV) phosphateion exchangekinetics Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13430,"journal":{"name":"Indian Chemical Engineer","volume":"1 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of heavy metal ions removal from aqueous solutions using synthesised composite hybrid cation exchanger\",\"authors\":\"Raghu Raja Pandiyan Kuppusamy, Yashwanth Padarthi\",\"doi\":\"10.1080/00194506.2023.2268081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTHybrid organic–inorganic materials make it possible to combine beneficial organic and inorganic properties into a single molecular-scale composite. In this study, the removal efficiency of synthesized organic–inorganic hybrid cation exchanger: nylon-6,6, Zr (IV) phosphate with respect to Cu2+, Zn2+ and Cd2+ has been investigated in order to take into account its potential use to clean up wastewaters from heavy metals. Metal concentrations in solution of 0.02 and 0.2 mol/L were used in the batch technique. For both lower and higher initial concentration, the process was fitting to both first and pseudo-first-order-kinetic model, while it is also consistent with the intra-particle diffusion model. Particle diffusion is the rate-limiting step in the multistep process that is primarily controlled by external mass transfer. Moderate activation energy values confirmed that the process is a combination of both physisorption and chemisorption. The order of removal may be presented as Cu2+ > Zn2+ > Cd2+.KEYWORDS: Heavy metalnylon-6,6, Zr (IV) phosphateion exchangekinetics Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":13430,\"journal\":{\"name\":\"Indian Chemical Engineer\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Chemical Engineer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00194506.2023.2268081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Chemical Engineer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00194506.2023.2268081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Kinetics of heavy metal ions removal from aqueous solutions using synthesised composite hybrid cation exchanger
ABSTRACTHybrid organic–inorganic materials make it possible to combine beneficial organic and inorganic properties into a single molecular-scale composite. In this study, the removal efficiency of synthesized organic–inorganic hybrid cation exchanger: nylon-6,6, Zr (IV) phosphate with respect to Cu2+, Zn2+ and Cd2+ has been investigated in order to take into account its potential use to clean up wastewaters from heavy metals. Metal concentrations in solution of 0.02 and 0.2 mol/L were used in the batch technique. For both lower and higher initial concentration, the process was fitting to both first and pseudo-first-order-kinetic model, while it is also consistent with the intra-particle diffusion model. Particle diffusion is the rate-limiting step in the multistep process that is primarily controlled by external mass transfer. Moderate activation energy values confirmed that the process is a combination of both physisorption and chemisorption. The order of removal may be presented as Cu2+ > Zn2+ > Cd2+.KEYWORDS: Heavy metalnylon-6,6, Zr (IV) phosphateion exchangekinetics Disclosure statementNo potential conflict of interest was reported by the author(s).