Marcin Rywik, Axel Zimmermann, Alexander J. Eder, Edoardo Scoletta, Wolfgang Polifke
{"title":"基于多层感知器-卷积自编码器网络的层流预混火焰非线性动力学空间分辨建模","authors":"Marcin Rywik, Axel Zimmermann, Alexander J. Eder, Edoardo Scoletta, Wolfgang Polifke","doi":"10.1115/1.4063788","DOIUrl":null,"url":null,"abstract":"Abstract This work presents a multilayer perceptron-convolutional autoencoder (MLP-CAE) neural network, which accurately predicts the two-dimensional flame dynamics of an acoustically excited premixed laminar flame. The architecture maps the acoustic perturbation time series to a heat release rate field, capturing flame lengths and shapes. This extends previous neural network models, which predicted only the field-integrated value. The MLP-CAE comprises two sub-models: an MLP and a CAE. The idea behind the CAE network is to find a lower dimensional latent space of the heat release rate field. The MLP is responsible for modeling the flame dynamics by transforming the acoustic forcing signal into this latent space, enabling the decoder to produce the flow field distributions. To train the MLP-CAE, computational fluid dynamics (CFD) flame simulations with a broadband acoustic forcing were used. Its normalized amplitude was set to 0.5 and 1.0, ensuring a nonlinear flame response. The network was found to accurately predict the perturbed flame shapes. Additionally, it conserved the correct frequency response as verified by the global and local flame describing functions. The MLP-CAE provides a building block towards a potential shift away from a '0D' flame analysis with the acoustic compactness assumption. Combined with an acoustic network, the generated flame fields could provide more physical insight in the thermoacoustic dynamics. Those capabilities do not come at an additional significant computational cost, as even the previous nonspatial flame models had to train on the CFD data, which included field distributions.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":"8 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially Resolved Modeling of the Nonlinear Dynamics of a Laminar Premixed Flame with a Multilayer Perceptron - Convolution Autoencoder Network\",\"authors\":\"Marcin Rywik, Axel Zimmermann, Alexander J. Eder, Edoardo Scoletta, Wolfgang Polifke\",\"doi\":\"10.1115/1.4063788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work presents a multilayer perceptron-convolutional autoencoder (MLP-CAE) neural network, which accurately predicts the two-dimensional flame dynamics of an acoustically excited premixed laminar flame. The architecture maps the acoustic perturbation time series to a heat release rate field, capturing flame lengths and shapes. This extends previous neural network models, which predicted only the field-integrated value. The MLP-CAE comprises two sub-models: an MLP and a CAE. The idea behind the CAE network is to find a lower dimensional latent space of the heat release rate field. The MLP is responsible for modeling the flame dynamics by transforming the acoustic forcing signal into this latent space, enabling the decoder to produce the flow field distributions. To train the MLP-CAE, computational fluid dynamics (CFD) flame simulations with a broadband acoustic forcing were used. Its normalized amplitude was set to 0.5 and 1.0, ensuring a nonlinear flame response. The network was found to accurately predict the perturbed flame shapes. Additionally, it conserved the correct frequency response as verified by the global and local flame describing functions. The MLP-CAE provides a building block towards a potential shift away from a '0D' flame analysis with the acoustic compactness assumption. Combined with an acoustic network, the generated flame fields could provide more physical insight in the thermoacoustic dynamics. Those capabilities do not come at an additional significant computational cost, as even the previous nonspatial flame models had to train on the CFD data, which included field distributions.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063788\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063788","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Spatially Resolved Modeling of the Nonlinear Dynamics of a Laminar Premixed Flame with a Multilayer Perceptron - Convolution Autoencoder Network
Abstract This work presents a multilayer perceptron-convolutional autoencoder (MLP-CAE) neural network, which accurately predicts the two-dimensional flame dynamics of an acoustically excited premixed laminar flame. The architecture maps the acoustic perturbation time series to a heat release rate field, capturing flame lengths and shapes. This extends previous neural network models, which predicted only the field-integrated value. The MLP-CAE comprises two sub-models: an MLP and a CAE. The idea behind the CAE network is to find a lower dimensional latent space of the heat release rate field. The MLP is responsible for modeling the flame dynamics by transforming the acoustic forcing signal into this latent space, enabling the decoder to produce the flow field distributions. To train the MLP-CAE, computational fluid dynamics (CFD) flame simulations with a broadband acoustic forcing were used. Its normalized amplitude was set to 0.5 and 1.0, ensuring a nonlinear flame response. The network was found to accurately predict the perturbed flame shapes. Additionally, it conserved the correct frequency response as verified by the global and local flame describing functions. The MLP-CAE provides a building block towards a potential shift away from a '0D' flame analysis with the acoustic compactness assumption. Combined with an acoustic network, the generated flame fields could provide more physical insight in the thermoacoustic dynamics. Those capabilities do not come at an additional significant computational cost, as even the previous nonspatial flame models had to train on the CFD data, which included field distributions.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.