自动乘客计数中的人工智能:使用分区等效检验的成本效益验证

David Ellenberger, Michael Siebert
{"title":"自动乘客计数中的人工智能:使用分区等效检验的成本效益验证","authors":"David Ellenberger, Michael Siebert","doi":"10.1080/23249935.2023.2267702","DOIUrl":null,"url":null,"abstract":"In Automatic Passenger Counting (APC), the demand for very low errors has been fueled by applications like revenue sharing, which amounts to massive annual sums. As a consequence, APC validation costs are increasing and this work presents a solution to increase the efficiency of initial or recurrent, e.g. yearly, validations. The new approach, the partitioned equivalence test, guarantees the same bounded, low user risk while reducing efforts in comparison to established (equivalence) test procedures. This involves a pre-classification step, which selects the more informative bits of data (e.g. footage). Different use cases are evaluated: from entirely manual to algorithmic, artificial intelligence assisted workflows. Already for manual counts, the new approach can be used as a drop-in replacement to reduce validation costs, while savings in algorithmic use cases demonstrated that cost halving is possible. Due to the user risk being controlled no additional technical requirements are introduced.","PeriodicalId":49416,"journal":{"name":"Transportmetrica","volume":"21 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in automatic passenger counting: cost-efficient validation using the partitioned equivalence test\",\"authors\":\"David Ellenberger, Michael Siebert\",\"doi\":\"10.1080/23249935.2023.2267702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Automatic Passenger Counting (APC), the demand for very low errors has been fueled by applications like revenue sharing, which amounts to massive annual sums. As a consequence, APC validation costs are increasing and this work presents a solution to increase the efficiency of initial or recurrent, e.g. yearly, validations. The new approach, the partitioned equivalence test, guarantees the same bounded, low user risk while reducing efforts in comparison to established (equivalence) test procedures. This involves a pre-classification step, which selects the more informative bits of data (e.g. footage). Different use cases are evaluated: from entirely manual to algorithmic, artificial intelligence assisted workflows. Already for manual counts, the new approach can be used as a drop-in replacement to reduce validation costs, while savings in algorithmic use cases demonstrated that cost halving is possible. Due to the user risk being controlled no additional technical requirements are introduced.\",\"PeriodicalId\":49416,\"journal\":{\"name\":\"Transportmetrica\",\"volume\":\"21 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23249935.2023.2267702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23249935.2023.2267702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自动乘客计数(APC)中,像收益共享这样的应用推动了对低误差的需求,这相当于每年的巨额金额。因此,APC验证成本正在增加,这项工作提供了一种提高初始或重复验证效率的解决方案,例如每年一次的验证。新的方法,分区等价测试,保证了相同的有界、低用户风险,同时减少了与已建立的(等价)测试过程相比的工作量。这涉及到一个预分类步骤,它选择更有信息量的数据位(例如镜头)。评估了不同的用例:从完全手动到算法、人工智能辅助的工作流。对于手动计数,新方法可以作为替代来降低验证成本,而算法用例的节省表明,成本减半是可能的。由于控制了用户风险,因此没有引入额外的技术需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence in automatic passenger counting: cost-efficient validation using the partitioned equivalence test
In Automatic Passenger Counting (APC), the demand for very low errors has been fueled by applications like revenue sharing, which amounts to massive annual sums. As a consequence, APC validation costs are increasing and this work presents a solution to increase the efficiency of initial or recurrent, e.g. yearly, validations. The new approach, the partitioned equivalence test, guarantees the same bounded, low user risk while reducing efforts in comparison to established (equivalence) test procedures. This involves a pre-classification step, which selects the more informative bits of data (e.g. footage). Different use cases are evaluated: from entirely manual to algorithmic, artificial intelligence assisted workflows. Already for manual counts, the new approach can be used as a drop-in replacement to reduce validation costs, while savings in algorithmic use cases demonstrated that cost halving is possible. Due to the user risk being controlled no additional technical requirements are introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportmetrica
Transportmetrica 工程技术-运输科技
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信