将叶片弹性纳入频域螺旋桨旋涡颤振分析

IF 1.5 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Christopher Koch, Benedikt Koert
{"title":"将叶片弹性纳入频域螺旋桨旋涡颤振分析","authors":"Christopher Koch, Benedikt Koert","doi":"10.2514/1.c037501","DOIUrl":null,"url":null,"abstract":"Whirl flutter as an aeroelastic instability can be a limiting factor in the design and certification of turboprop aircraft configurations, especially for the engine suspension. Whirl flutter prediction for these configurations is currently done in the frequency domain using rigid propeller aerodynamic derivatives. Blade flexibility is neglected in this process, although it is known to have an impact on whirl flutter predictions. This paper uses frequency-domain transfer matrices for the propeller hub loads identified from a time-domain multibody simulation model of an isolated turboprop propeller and included into a frequency-domain flutter analysis to study the impact of blade elasticity on propeller whirl flutter. Results demonstrate a significantly stabilizing effect of blade elasticity on propeller whirl flutter due to a reduction of the destabilizing pitch-yaw cross-coupling moment. The method demonstrated in this paper is applicable to arbitrary time-domain propeller models and compatible with standard frequency-domain flutter processes, allowing for increased fidelity in the flutter prediction process.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"24 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Including Blade Elasticity into Frequency-Domain Propeller Whirl Flutter Analysis\",\"authors\":\"Christopher Koch, Benedikt Koert\",\"doi\":\"10.2514/1.c037501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whirl flutter as an aeroelastic instability can be a limiting factor in the design and certification of turboprop aircraft configurations, especially for the engine suspension. Whirl flutter prediction for these configurations is currently done in the frequency domain using rigid propeller aerodynamic derivatives. Blade flexibility is neglected in this process, although it is known to have an impact on whirl flutter predictions. This paper uses frequency-domain transfer matrices for the propeller hub loads identified from a time-domain multibody simulation model of an isolated turboprop propeller and included into a frequency-domain flutter analysis to study the impact of blade elasticity on propeller whirl flutter. Results demonstrate a significantly stabilizing effect of blade elasticity on propeller whirl flutter due to a reduction of the destabilizing pitch-yaw cross-coupling moment. The method demonstrated in this paper is applicable to arbitrary time-domain propeller models and compatible with standard frequency-domain flutter processes, allowing for increased fidelity in the flutter prediction process.\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c037501\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.c037501","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

涡旋颤振作为一种气动弹性不稳定性,在涡桨飞机的结构设计和认证中是一个限制因素,特别是对发动机悬架而言。这些构型的旋流颤振预测目前是在频域使用刚性螺旋桨气动导数进行的。叶片柔韧性在这个过程中被忽略,虽然已知有影响的旋涡颤振预测。本文从孤立涡轮螺旋桨的时域多体仿真模型中识别出螺旋桨轮毂载荷的频域传递矩阵,并将其纳入频域颤振分析,研究了叶片弹性对螺旋桨旋涡颤振的影响。结果表明,叶片弹性对螺旋桨颤振具有显著的稳定作用,这主要是由于降低了桨距-偏航交叉耦合的失稳力矩。该方法适用于任意时域螺旋桨模型,并与标准频域颤振过程兼容,提高了颤振预测过程的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Including Blade Elasticity into Frequency-Domain Propeller Whirl Flutter Analysis
Whirl flutter as an aeroelastic instability can be a limiting factor in the design and certification of turboprop aircraft configurations, especially for the engine suspension. Whirl flutter prediction for these configurations is currently done in the frequency domain using rigid propeller aerodynamic derivatives. Blade flexibility is neglected in this process, although it is known to have an impact on whirl flutter predictions. This paper uses frequency-domain transfer matrices for the propeller hub loads identified from a time-domain multibody simulation model of an isolated turboprop propeller and included into a frequency-domain flutter analysis to study the impact of blade elasticity on propeller whirl flutter. Results demonstrate a significantly stabilizing effect of blade elasticity on propeller whirl flutter due to a reduction of the destabilizing pitch-yaw cross-coupling moment. The method demonstrated in this paper is applicable to arbitrary time-domain propeller models and compatible with standard frequency-domain flutter processes, allowing for increased fidelity in the flutter prediction process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Aircraft
Journal of Aircraft 工程技术-工程:宇航
CiteScore
4.50
自引率
31.80%
发文量
141
审稿时长
6 months
期刊介绍: This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信