Kevin P. Lévuok-Mena, Oscar J. Patiño-Ladino, Juliet A. Prieto-Rodríguez
{"title":"Chocó(哥伦比亚)治疗2型糖尿病和肥胖症常用药用植物对α-葡萄糖苷酶、α-淀粉酶和胰脂肪酶的体外抑制活性","authors":"Kevin P. Lévuok-Mena, Oscar J. Patiño-Ladino, Juliet A. Prieto-Rodríguez","doi":"10.3390/scipharm91040049","DOIUrl":null,"url":null,"abstract":"Plant-based therapies are widely utilized for treating diseases in approximately 80% of the global population, including Colombia’s Chocó Department. This study aimed to identify and evaluate plants with significant therapeutic value for obesity and diabetes in Chocó. The inhibitory effects of these plants on pancreatic lipase (PL), α-glucosidase (AG), and α-amylase (AA) were assessed, and the most promising species were selected to isolate and identify bioactive components. Artocarpus altilis, Momordica balsamina, Bauhinia picta, Neurolaena lobata, and Vismia macrophylla emerged as key species based on their traditional usage among the Chocó population. Notably, the extract derived from Vismia macrophylla demonstrated the most encouraging outcomes as a digestive enzyme inhibitor, exhibiting IC50 values of 0.99 ± 0.21 μg/mL, 5.61 ± 0.82 mg/mL, and 28.91 ± 2.10 μg/mL for AG, AA, and PL, respectively. Further chemical analysis led to the isolation of three bioactive compounds: 5′-demethoxycadensin G 1, para-hydroxybenzoic acid methyl ester 2, and para-hydroxybenzoic acid butyl ester 3. Compound 1 displayed the highest activity against AG (IC50 = 164.30 ± 0.11 μM), while compounds 2 (IC50 = 28.50 ± 4.07 μM) and 3 (IC50 = 10.15 ± 3.42 μM) exhibited potent inhibitory effects on PL. Molecular docking and enzymatic kinetics studies indicate that these bioactive compounds primarily act as mixed inhibitors of AG and non-competitive inhibitors of PL. These findings underscore the potential of V. macrophylla and its compounds as effective inhibitors of digestive enzymes associated with obesity and type 2 diabetes.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":"214 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro Inhibitory Activities against α-Glucosidase, α-Amylase, and Pancreatic Lipase of Medicinal Plants Commonly Used in Chocó (Colombia) for Type 2 Diabetes and Obesity Treatment\",\"authors\":\"Kevin P. Lévuok-Mena, Oscar J. Patiño-Ladino, Juliet A. Prieto-Rodríguez\",\"doi\":\"10.3390/scipharm91040049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant-based therapies are widely utilized for treating diseases in approximately 80% of the global population, including Colombia’s Chocó Department. This study aimed to identify and evaluate plants with significant therapeutic value for obesity and diabetes in Chocó. The inhibitory effects of these plants on pancreatic lipase (PL), α-glucosidase (AG), and α-amylase (AA) were assessed, and the most promising species were selected to isolate and identify bioactive components. Artocarpus altilis, Momordica balsamina, Bauhinia picta, Neurolaena lobata, and Vismia macrophylla emerged as key species based on their traditional usage among the Chocó population. Notably, the extract derived from Vismia macrophylla demonstrated the most encouraging outcomes as a digestive enzyme inhibitor, exhibiting IC50 values of 0.99 ± 0.21 μg/mL, 5.61 ± 0.82 mg/mL, and 28.91 ± 2.10 μg/mL for AG, AA, and PL, respectively. Further chemical analysis led to the isolation of three bioactive compounds: 5′-demethoxycadensin G 1, para-hydroxybenzoic acid methyl ester 2, and para-hydroxybenzoic acid butyl ester 3. Compound 1 displayed the highest activity against AG (IC50 = 164.30 ± 0.11 μM), while compounds 2 (IC50 = 28.50 ± 4.07 μM) and 3 (IC50 = 10.15 ± 3.42 μM) exhibited potent inhibitory effects on PL. Molecular docking and enzymatic kinetics studies indicate that these bioactive compounds primarily act as mixed inhibitors of AG and non-competitive inhibitors of PL. These findings underscore the potential of V. macrophylla and its compounds as effective inhibitors of digestive enzymes associated with obesity and type 2 diabetes.\",\"PeriodicalId\":21601,\"journal\":{\"name\":\"Scientia Pharmaceutica\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Pharmaceutica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/scipharm91040049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Pharmaceutica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/scipharm91040049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
In Vitro Inhibitory Activities against α-Glucosidase, α-Amylase, and Pancreatic Lipase of Medicinal Plants Commonly Used in Chocó (Colombia) for Type 2 Diabetes and Obesity Treatment
Plant-based therapies are widely utilized for treating diseases in approximately 80% of the global population, including Colombia’s Chocó Department. This study aimed to identify and evaluate plants with significant therapeutic value for obesity and diabetes in Chocó. The inhibitory effects of these plants on pancreatic lipase (PL), α-glucosidase (AG), and α-amylase (AA) were assessed, and the most promising species were selected to isolate and identify bioactive components. Artocarpus altilis, Momordica balsamina, Bauhinia picta, Neurolaena lobata, and Vismia macrophylla emerged as key species based on their traditional usage among the Chocó population. Notably, the extract derived from Vismia macrophylla demonstrated the most encouraging outcomes as a digestive enzyme inhibitor, exhibiting IC50 values of 0.99 ± 0.21 μg/mL, 5.61 ± 0.82 mg/mL, and 28.91 ± 2.10 μg/mL for AG, AA, and PL, respectively. Further chemical analysis led to the isolation of three bioactive compounds: 5′-demethoxycadensin G 1, para-hydroxybenzoic acid methyl ester 2, and para-hydroxybenzoic acid butyl ester 3. Compound 1 displayed the highest activity against AG (IC50 = 164.30 ± 0.11 μM), while compounds 2 (IC50 = 28.50 ± 4.07 μM) and 3 (IC50 = 10.15 ± 3.42 μM) exhibited potent inhibitory effects on PL. Molecular docking and enzymatic kinetics studies indicate that these bioactive compounds primarily act as mixed inhibitors of AG and non-competitive inhibitors of PL. These findings underscore the potential of V. macrophylla and its compounds as effective inhibitors of digestive enzymes associated with obesity and type 2 diabetes.