{"title":"试验版fvGFS对北太平洋西部TC成因预报能力的评估","authors":"Shu-Jeng Lin, Huang-Hsiung Hsu, Chia-Ying Tu, Cheng-Hsiang Chih","doi":"10.1175/waf-d-23-0056.1","DOIUrl":null,"url":null,"abstract":"Abstract We evaluated the ability of the fvGFS with a 13-km resolution in simulating tropical cyclone genesis (TCG) by conducting hindcast experiments for 42 TCG events over 2018–2019 in the Western North Pacific (WNP). We observed an improved hit rate with a lead time of between 5 and 4 days; however, from 4 to 3 days lead time, no consistent improvement in the temporal and spatial errors of TCG was obtained. More Fail cases occurred when and where a low-level easterly background flow prevailed: from mid-August to September 2018 and after October 2019 and mainly in the eastern WNP. In Hit cases, 850-hPa stream function and divergence, 200-hPa divergence, and genesis potential index (GPI) provided favorable TCG conditions. However, the Hit–Fail case differences in other suggested factors (vertical wind shear, 700-hPa moisture, and SST) were nonsignificant. By contrast, the reanalysis used for validation showed only significant difference in 850-hPa stream function. We stratified the background flow of TCG into four types. The monsoon trough type (82%) provided the most favorable environmental conditions for successful hindcasts, followed by the subtropical high (45%), easterly (17%), and others (0%) types. These results indicated that fvGFS is more capable of enhancing monsoon trough circulation and provides a much better environment for TCG development but is less skillful in other types of background flow that provides weaker large-scale forcing. The results suggest that the most advanced high-resolution weather forecast models such as the fvGFS warrants further improvement to properly simulate the subtle circulation features (e.g., mesoscale convection system) that might provide seeds for TCG.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":"41 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of an Experimental Version of fvGFS for TC Genesis Forecasting Ability in the Western North Pacific\",\"authors\":\"Shu-Jeng Lin, Huang-Hsiung Hsu, Chia-Ying Tu, Cheng-Hsiang Chih\",\"doi\":\"10.1175/waf-d-23-0056.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We evaluated the ability of the fvGFS with a 13-km resolution in simulating tropical cyclone genesis (TCG) by conducting hindcast experiments for 42 TCG events over 2018–2019 in the Western North Pacific (WNP). We observed an improved hit rate with a lead time of between 5 and 4 days; however, from 4 to 3 days lead time, no consistent improvement in the temporal and spatial errors of TCG was obtained. More Fail cases occurred when and where a low-level easterly background flow prevailed: from mid-August to September 2018 and after October 2019 and mainly in the eastern WNP. In Hit cases, 850-hPa stream function and divergence, 200-hPa divergence, and genesis potential index (GPI) provided favorable TCG conditions. However, the Hit–Fail case differences in other suggested factors (vertical wind shear, 700-hPa moisture, and SST) were nonsignificant. By contrast, the reanalysis used for validation showed only significant difference in 850-hPa stream function. We stratified the background flow of TCG into four types. The monsoon trough type (82%) provided the most favorable environmental conditions for successful hindcasts, followed by the subtropical high (45%), easterly (17%), and others (0%) types. These results indicated that fvGFS is more capable of enhancing monsoon trough circulation and provides a much better environment for TCG development but is less skillful in other types of background flow that provides weaker large-scale forcing. The results suggest that the most advanced high-resolution weather forecast models such as the fvGFS warrants further improvement to properly simulate the subtle circulation features (e.g., mesoscale convection system) that might provide seeds for TCG.\",\"PeriodicalId\":49369,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-23-0056.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0056.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Assessment of an Experimental Version of fvGFS for TC Genesis Forecasting Ability in the Western North Pacific
Abstract We evaluated the ability of the fvGFS with a 13-km resolution in simulating tropical cyclone genesis (TCG) by conducting hindcast experiments for 42 TCG events over 2018–2019 in the Western North Pacific (WNP). We observed an improved hit rate with a lead time of between 5 and 4 days; however, from 4 to 3 days lead time, no consistent improvement in the temporal and spatial errors of TCG was obtained. More Fail cases occurred when and where a low-level easterly background flow prevailed: from mid-August to September 2018 and after October 2019 and mainly in the eastern WNP. In Hit cases, 850-hPa stream function and divergence, 200-hPa divergence, and genesis potential index (GPI) provided favorable TCG conditions. However, the Hit–Fail case differences in other suggested factors (vertical wind shear, 700-hPa moisture, and SST) were nonsignificant. By contrast, the reanalysis used for validation showed only significant difference in 850-hPa stream function. We stratified the background flow of TCG into four types. The monsoon trough type (82%) provided the most favorable environmental conditions for successful hindcasts, followed by the subtropical high (45%), easterly (17%), and others (0%) types. These results indicated that fvGFS is more capable of enhancing monsoon trough circulation and provides a much better environment for TCG development but is less skillful in other types of background flow that provides weaker large-scale forcing. The results suggest that the most advanced high-resolution weather forecast models such as the fvGFS warrants further improvement to properly simulate the subtle circulation features (e.g., mesoscale convection system) that might provide seeds for TCG.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.