{"title":"高速公路的进出弧线:它们在变分法中的精确计算","authors":"L. Bayón, P. Fortuny Ayuso, J.M. Grau, M.M. Ruiz","doi":"10.4153/s000843952300070x","DOIUrl":null,"url":null,"abstract":"Abstract We settle the question of how to compute the entry and leaving arcs for turnpikes in autonomous variational problems, in the one-dimensional case using the phase space of the vector field associated with the Euler equation, and the initial/final and/or the transversality condition. The results hinge on the realization that extremals are the contours of a well-known function and that the transversality condition is (generically) a curve. An approximation algorithm is presented, and an example is included for completeness.","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":"24 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entry and leaving arcs of turnpikes: their exact computation in the calculus of variations\",\"authors\":\"L. Bayón, P. Fortuny Ayuso, J.M. Grau, M.M. Ruiz\",\"doi\":\"10.4153/s000843952300070x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We settle the question of how to compute the entry and leaving arcs for turnpikes in autonomous variational problems, in the one-dimensional case using the phase space of the vector field associated with the Euler equation, and the initial/final and/or the transversality condition. The results hinge on the realization that extremals are the contours of a well-known function and that the transversality condition is (generically) a curve. An approximation algorithm is presented, and an example is included for completeness.\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s000843952300070x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s000843952300070x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Entry and leaving arcs of turnpikes: their exact computation in the calculus of variations
Abstract We settle the question of how to compute the entry and leaving arcs for turnpikes in autonomous variational problems, in the one-dimensional case using the phase space of the vector field associated with the Euler equation, and the initial/final and/or the transversality condition. The results hinge on the realization that extremals are the contours of a well-known function and that the transversality condition is (generically) a curve. An approximation algorithm is presented, and an example is included for completeness.
期刊介绍:
The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year.
To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics.
Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année.
Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.