高速公路的进出弧线:它们在变分法中的精确计算

Pub Date : 2023-09-12 DOI:10.4153/s000843952300070x
L. Bayón, P. Fortuny Ayuso, J.M. Grau, M.M. Ruiz
{"title":"高速公路的进出弧线:它们在变分法中的精确计算","authors":"L. Bayón, P. Fortuny Ayuso, J.M. Grau, M.M. Ruiz","doi":"10.4153/s000843952300070x","DOIUrl":null,"url":null,"abstract":"Abstract We settle the question of how to compute the entry and leaving arcs for turnpikes in autonomous variational problems, in the one-dimensional case using the phase space of the vector field associated with the Euler equation, and the initial/final and/or the transversality condition. The results hinge on the realization that extremals are the contours of a well-known function and that the transversality condition is (generically) a curve. An approximation algorithm is presented, and an example is included for completeness.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entry and leaving arcs of turnpikes: their exact computation in the calculus of variations\",\"authors\":\"L. Bayón, P. Fortuny Ayuso, J.M. Grau, M.M. Ruiz\",\"doi\":\"10.4153/s000843952300070x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We settle the question of how to compute the entry and leaving arcs for turnpikes in autonomous variational problems, in the one-dimensional case using the phase space of the vector field associated with the Euler equation, and the initial/final and/or the transversality condition. The results hinge on the realization that extremals are the contours of a well-known function and that the transversality condition is (generically) a curve. An approximation algorithm is presented, and an example is included for completeness.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s000843952300070x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s000843952300070x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用与欧拉方程相关的向量场相空间,以及初始/最终和/或横向条件,解决了一元情况下自主变分问题中高速公路入口弧和出弧的计算问题。结果取决于这样一种认识,即极值是已知函数的轮廓,而横截条件(一般)是一条曲线。给出了一种近似算法,并给出了一个算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Entry and leaving arcs of turnpikes: their exact computation in the calculus of variations
Abstract We settle the question of how to compute the entry and leaving arcs for turnpikes in autonomous variational problems, in the one-dimensional case using the phase space of the vector field associated with the Euler equation, and the initial/final and/or the transversality condition. The results hinge on the realization that extremals are the contours of a well-known function and that the transversality condition is (generically) a curve. An approximation algorithm is presented, and an example is included for completeness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信