拓扑边缘态的磁减速

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Guillaume Bal, Simon Becker, Alexis Drouot
{"title":"拓扑边缘态的磁减速","authors":"Guillaume Bal,&nbsp;Simon Becker,&nbsp;Alexis Drouot","doi":"10.1002/cpa.22154","DOIUrl":null,"url":null,"abstract":"<p>We study the propagation of wavepackets along curved interfaces between topological, magnetic materials. Our Hamiltonian is a massive Dirac operator with a magnetic potential. We construct semiclassical wavepackets propagating along the curved interface as adiabatic modulations of straight edge states under constant magnetic fields. While in the magnetic-free case, the wavepackets propagate coherently at speed one, here they experience slowdown, dispersion, and Aharonov–Bohm effects. Several numerical simulations illustrate our results.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Magnetic slowdown of topological edge states\",\"authors\":\"Guillaume Bal,&nbsp;Simon Becker,&nbsp;Alexis Drouot\",\"doi\":\"10.1002/cpa.22154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the propagation of wavepackets along curved interfaces between topological, magnetic materials. Our Hamiltonian is a massive Dirac operator with a magnetic potential. We construct semiclassical wavepackets propagating along the curved interface as adiabatic modulations of straight edge states under constant magnetic fields. While in the magnetic-free case, the wavepackets propagate coherently at speed one, here they experience slowdown, dispersion, and Aharonov–Bohm effects. Several numerical simulations illustrate our results.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22154\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22154","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了波包沿着拓扑磁性材料之间的弯曲界面的传播。我们的哈密顿算符是一个带磁势的大规模狄拉克算符。我们构造了沿弯曲界面传播的半经典波包,作为恒定磁场下直边状态的绝热调制。而在无磁的情况下,波包以1的速度相干传播,在这里它们经历了减速、色散和阿哈罗诺夫-玻姆效应。几个数值模拟验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic slowdown of topological edge states

We study the propagation of wavepackets along curved interfaces between topological, magnetic materials. Our Hamiltonian is a massive Dirac operator with a magnetic potential. We construct semiclassical wavepackets propagating along the curved interface as adiabatic modulations of straight edge states under constant magnetic fields. While in the magnetic-free case, the wavepackets propagate coherently at speed one, here they experience slowdown, dispersion, and Aharonov–Bohm effects. Several numerical simulations illustrate our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信