{"title":"拓扑边缘态的磁减速","authors":"Guillaume Bal, Simon Becker, Alexis Drouot","doi":"10.1002/cpa.22154","DOIUrl":null,"url":null,"abstract":"<p>We study the propagation of wavepackets along curved interfaces between topological, magnetic materials. Our Hamiltonian is a massive Dirac operator with a magnetic potential. We construct semiclassical wavepackets propagating along the curved interface as adiabatic modulations of straight edge states under constant magnetic fields. While in the magnetic-free case, the wavepackets propagate coherently at speed one, here they experience slowdown, dispersion, and Aharonov–Bohm effects. Several numerical simulations illustrate our results.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Magnetic slowdown of topological edge states\",\"authors\":\"Guillaume Bal, Simon Becker, Alexis Drouot\",\"doi\":\"10.1002/cpa.22154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the propagation of wavepackets along curved interfaces between topological, magnetic materials. Our Hamiltonian is a massive Dirac operator with a magnetic potential. We construct semiclassical wavepackets propagating along the curved interface as adiabatic modulations of straight edge states under constant magnetic fields. While in the magnetic-free case, the wavepackets propagate coherently at speed one, here they experience slowdown, dispersion, and Aharonov–Bohm effects. Several numerical simulations illustrate our results.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22154\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22154","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
We study the propagation of wavepackets along curved interfaces between topological, magnetic materials. Our Hamiltonian is a massive Dirac operator with a magnetic potential. We construct semiclassical wavepackets propagating along the curved interface as adiabatic modulations of straight edge states under constant magnetic fields. While in the magnetic-free case, the wavepackets propagate coherently at speed one, here they experience slowdown, dispersion, and Aharonov–Bohm effects. Several numerical simulations illustrate our results.