氢解周期孔排水提高费托合成的煤油选择性

Carsten Unglaub, Andreas Jess
{"title":"氢解周期孔排水提高费托合成的煤油选择性","authors":"Carsten Unglaub, Andreas Jess","doi":"10.21926/cr.2303022","DOIUrl":null,"url":null,"abstract":"Accumulation of wax inside the catalyst pores during transient cobalt-catalyzed Fischer-Tropsch synthesis (FTS) leads to unfavorable product distribution and low activity by imposing internal mass transfer limitations. The condensation of paraffin severely changes the apparent product stream that actually leaves the reactor before the catalyst pores are filled completely and the steady state is reached. Thus, the product distribution of the transient FTS is less complex than expected in comparison to the steady-state FTS and increasingly consists of hydrocarbons (HCs) with an average chain length in the range of kerosene (C<sub>9</sub>-C<sub>17</sub>). So, in order to prevent FTS from reaching a steady state, the pores are drained periodically by hydrogenolysis (HGL). The alternating HGL is realized by a switch from syngas (H<sub>2</sub>, CO) to pure hydrogen at a reaction temperature in the range of 210°C to 240°C. The alternating process leads to an improvement in kerosene selectivity of 48%, 37%, and 28% at 210°C, 220°C and 240°C, respectively. Furthermore, the influence of temperature on the hydrogenolysis of long-chain HCs was experimentally investigated. It was found that temperature affects methane selectivity severely. A high hydrogenolysis temperature is favorable as this leads to a severely decreased overall methane selectivity and, thus to a higher production rate of alkanes within the carbon number range of 9 to 17.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Kerosene Selectivity of Fischer-Tropsch Synthesis by Periodical Pore Drainage Via Hydrogenolysis\",\"authors\":\"Carsten Unglaub, Andreas Jess\",\"doi\":\"10.21926/cr.2303022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accumulation of wax inside the catalyst pores during transient cobalt-catalyzed Fischer-Tropsch synthesis (FTS) leads to unfavorable product distribution and low activity by imposing internal mass transfer limitations. The condensation of paraffin severely changes the apparent product stream that actually leaves the reactor before the catalyst pores are filled completely and the steady state is reached. Thus, the product distribution of the transient FTS is less complex than expected in comparison to the steady-state FTS and increasingly consists of hydrocarbons (HCs) with an average chain length in the range of kerosene (C<sub>9</sub>-C<sub>17</sub>). So, in order to prevent FTS from reaching a steady state, the pores are drained periodically by hydrogenolysis (HGL). The alternating HGL is realized by a switch from syngas (H<sub>2</sub>, CO) to pure hydrogen at a reaction temperature in the range of 210°C to 240°C. The alternating process leads to an improvement in kerosene selectivity of 48%, 37%, and 28% at 210°C, 220°C and 240°C, respectively. Furthermore, the influence of temperature on the hydrogenolysis of long-chain HCs was experimentally investigated. It was found that temperature affects methane selectivity severely. A high hydrogenolysis temperature is favorable as this leads to a severely decreased overall methane selectivity and, thus to a higher production rate of alkanes within the carbon number range of 9 to 17.\",\"PeriodicalId\":178524,\"journal\":{\"name\":\"Catalysis Research\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/cr.2303022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2303022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在瞬态钴催化费托合成(FTS)过程中,蜡在催化剂孔内的积累通过施加内部传质限制导致不利的产物分布和低活性。石蜡的缩合严重地改变了在催化剂孔被完全填满和达到稳态之前实际离开反应器的表面产物流。因此,与稳态FTS相比,瞬态FTS的产物分布没有预期的复杂,并且越来越多地由平均链长在煤油范围内的碳氢化合物(HCs)组成(C<sub>9</sub>-C<sub>17</sub>)。因此,为了防止FTS达到稳定状态,孔隙通过氢解(HGL)定期排干。交替HGL是通过在210°C至240°C的反应温度范围内从合成气(H<sub>2</sub>, CO)切换到纯氢来实现的。在210°C、220°C和240°C时,交替过程使煤油选择性分别提高48%、37%和28%。此外,还研究了温度对长链烃氢解反应的影响。结果表明,温度对甲烷的选择性影响较大。较高的氢解温度是有利的,因为这会导致甲烷选择性严重降低,从而在碳数9至17范围内产生更高的烷烃收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Kerosene Selectivity of Fischer-Tropsch Synthesis by Periodical Pore Drainage Via Hydrogenolysis
Accumulation of wax inside the catalyst pores during transient cobalt-catalyzed Fischer-Tropsch synthesis (FTS) leads to unfavorable product distribution and low activity by imposing internal mass transfer limitations. The condensation of paraffin severely changes the apparent product stream that actually leaves the reactor before the catalyst pores are filled completely and the steady state is reached. Thus, the product distribution of the transient FTS is less complex than expected in comparison to the steady-state FTS and increasingly consists of hydrocarbons (HCs) with an average chain length in the range of kerosene (C9-C17). So, in order to prevent FTS from reaching a steady state, the pores are drained periodically by hydrogenolysis (HGL). The alternating HGL is realized by a switch from syngas (H2, CO) to pure hydrogen at a reaction temperature in the range of 210°C to 240°C. The alternating process leads to an improvement in kerosene selectivity of 48%, 37%, and 28% at 210°C, 220°C and 240°C, respectively. Furthermore, the influence of temperature on the hydrogenolysis of long-chain HCs was experimentally investigated. It was found that temperature affects methane selectivity severely. A high hydrogenolysis temperature is favorable as this leads to a severely decreased overall methane selectivity and, thus to a higher production rate of alkanes within the carbon number range of 9 to 17.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信