植物化学物质在AMPK刺激下的多疾病靶向效应分析-糖尿病:一个计算方法

Richa Goyal, Manoj Kumar, Muhammad Anwar Mallick
{"title":"植物化学物质在AMPK刺激下的多疾病靶向效应分析-糖尿病:一个计算方法","authors":"Richa Goyal, Manoj Kumar, Muhammad Anwar Mallick","doi":"10.36922/gpd.0927","DOIUrl":null,"url":null,"abstract":"Diabetes is a silent killer and a metabolic syndrome characterized by hyperglycemia that has been exponentially increasing in recent years. There is a need to develop therapeutic agents to control hyperglycemia and its secondary complications as well as protect and revive beta cells in diabetic patients. The target for first-line diabetes treatment is the adenosine monophosphate protein kinase (AMPK), which participates in cellular energy metabolism through phosphorylation of metabolic enzymes and transcription regulators. This study examined the drug-related properties as well as lead preparation of Catharanthus roseus alkaloids and testing molecular interaction at the AMPK targets to confirm their anti-diabetic effect. A control drug metformin and a library of 85 molecules of C. roseus alkaloids were crossed with the ADMET test, followed by the investigation of molecular interaction tested on AMPK1 and AMPK2 targets through an in silico docking process. Vindolinine (CID: 24148538), vindoline (CID: 425978), (+)-vindorosine (CID: 261578), Cr-1 (CID: 5315746), and Cr-2 (CID: 59908094) had passed the ADMET test. Molecular interaction of the tested C. roseus alkaloids on AMPK1 and AMPK2 targets had potential energy that varied from −7.4 to −5.3 kcal/mol, whereas binding energies of −4.0 kcal/mol for AMPK1-metformin interaction and −4.2 kcal/mol for AMPK2-metformin interaction were observed. The tested C. roseus alkaloids were shown to be more potent activators of AMPK than the control drug. All five biomolecules of C. roseus acted as modulators that have the potential to stimulate AMPK, reduce glucose production, and increase glucose utilization in hepatocytes. In addition, they diminished insulin resistance and secondary complications of diabetes by inhibiting acetyl-CoA carboxylase, regulating cholesterol levels and macrophage, and reviving beta cells in Type 2 diabetes. These results provided the foundation for developing new multi-disease-targeting drugs that can treat diabetes, obesity, cardiovascular disease, cancer, and other diseases by the stimulation of AMPK1 and AMPK2 targets.","PeriodicalId":73136,"journal":{"name":"Gene & protein in disease","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of multi-disease targeting effect of phytochemicals by AMPK stimulation– diabetes: A computational approach\",\"authors\":\"Richa Goyal, Manoj Kumar, Muhammad Anwar Mallick\",\"doi\":\"10.36922/gpd.0927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is a silent killer and a metabolic syndrome characterized by hyperglycemia that has been exponentially increasing in recent years. There is a need to develop therapeutic agents to control hyperglycemia and its secondary complications as well as protect and revive beta cells in diabetic patients. The target for first-line diabetes treatment is the adenosine monophosphate protein kinase (AMPK), which participates in cellular energy metabolism through phosphorylation of metabolic enzymes and transcription regulators. This study examined the drug-related properties as well as lead preparation of Catharanthus roseus alkaloids and testing molecular interaction at the AMPK targets to confirm their anti-diabetic effect. A control drug metformin and a library of 85 molecules of C. roseus alkaloids were crossed with the ADMET test, followed by the investigation of molecular interaction tested on AMPK1 and AMPK2 targets through an in silico docking process. Vindolinine (CID: 24148538), vindoline (CID: 425978), (+)-vindorosine (CID: 261578), Cr-1 (CID: 5315746), and Cr-2 (CID: 59908094) had passed the ADMET test. Molecular interaction of the tested C. roseus alkaloids on AMPK1 and AMPK2 targets had potential energy that varied from −7.4 to −5.3 kcal/mol, whereas binding energies of −4.0 kcal/mol for AMPK1-metformin interaction and −4.2 kcal/mol for AMPK2-metformin interaction were observed. The tested C. roseus alkaloids were shown to be more potent activators of AMPK than the control drug. All five biomolecules of C. roseus acted as modulators that have the potential to stimulate AMPK, reduce glucose production, and increase glucose utilization in hepatocytes. In addition, they diminished insulin resistance and secondary complications of diabetes by inhibiting acetyl-CoA carboxylase, regulating cholesterol levels and macrophage, and reviving beta cells in Type 2 diabetes. These results provided the foundation for developing new multi-disease-targeting drugs that can treat diabetes, obesity, cardiovascular disease, cancer, and other diseases by the stimulation of AMPK1 and AMPK2 targets.\",\"PeriodicalId\":73136,\"journal\":{\"name\":\"Gene & protein in disease\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene & protein in disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36922/gpd.0927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene & protein in disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/gpd.0927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是一种无声杀手,是近年来呈指数增长的以高血糖为特征的代谢综合征。有必要开发治疗药物来控制高血糖及其继发并发症,以及保护和恢复糖尿病患者的β细胞。糖尿病一线治疗的靶点是腺苷单磷酸蛋白激酶(AMPK),它通过磷酸化代谢酶和转录调节因子参与细胞能量代谢。本研究考察了花楸生物碱的药物相关性质及先导物制备,并检测了其在AMPK靶点的分子相互作用,以证实其抗糖尿病作用。将对照药物二甲双胍与85个玫瑰花生物碱分子库进行ADMET试验,然后通过硅对接过程对AMPK1和AMPK2靶点进行分子相互作用研究。Vindolinine (CID: 24148538), vindoline (CID: 425978), (+)-vindorosine (CID: 261578), Cr-1 (CID: 5315746), Cr-2 (CID: 59908094)通过ADMET测试。在AMPK1和AMPK2靶点上,所测到的红桃生物碱分子相互作用的势能为- 7.4 ~ - 5.3 kcal/mol,而AMPK1-二甲双胍相互作用的结合能为- 4.0 kcal/mol, AMPK2-二甲双胍相互作用的结合能为- 4.2 kcal/mol。实验结果表明,与对照药物相比,玫瑰玫瑰生物碱对AMPK的激活作用更强。玫瑰玫瑰的所有五种生物分子都作为调节剂,有可能刺激AMPK,减少葡萄糖的产生,并增加肝细胞中的葡萄糖利用。此外,它们还通过抑制乙酰辅酶a羧化酶、调节胆固醇水平和巨噬细胞以及恢复2型糖尿病患者的β细胞来减少胰岛素抵抗和糖尿病的继发性并发症。这些结果为开发新的多疾病靶向药物提供了基础,这些药物可以通过刺激AMPK1和AMPK2靶点治疗糖尿病、肥胖、心血管疾病、癌症等疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of multi-disease targeting effect of phytochemicals by AMPK stimulation– diabetes: A computational approach
Diabetes is a silent killer and a metabolic syndrome characterized by hyperglycemia that has been exponentially increasing in recent years. There is a need to develop therapeutic agents to control hyperglycemia and its secondary complications as well as protect and revive beta cells in diabetic patients. The target for first-line diabetes treatment is the adenosine monophosphate protein kinase (AMPK), which participates in cellular energy metabolism through phosphorylation of metabolic enzymes and transcription regulators. This study examined the drug-related properties as well as lead preparation of Catharanthus roseus alkaloids and testing molecular interaction at the AMPK targets to confirm their anti-diabetic effect. A control drug metformin and a library of 85 molecules of C. roseus alkaloids were crossed with the ADMET test, followed by the investigation of molecular interaction tested on AMPK1 and AMPK2 targets through an in silico docking process. Vindolinine (CID: 24148538), vindoline (CID: 425978), (+)-vindorosine (CID: 261578), Cr-1 (CID: 5315746), and Cr-2 (CID: 59908094) had passed the ADMET test. Molecular interaction of the tested C. roseus alkaloids on AMPK1 and AMPK2 targets had potential energy that varied from −7.4 to −5.3 kcal/mol, whereas binding energies of −4.0 kcal/mol for AMPK1-metformin interaction and −4.2 kcal/mol for AMPK2-metformin interaction were observed. The tested C. roseus alkaloids were shown to be more potent activators of AMPK than the control drug. All five biomolecules of C. roseus acted as modulators that have the potential to stimulate AMPK, reduce glucose production, and increase glucose utilization in hepatocytes. In addition, they diminished insulin resistance and secondary complications of diabetes by inhibiting acetyl-CoA carboxylase, regulating cholesterol levels and macrophage, and reviving beta cells in Type 2 diabetes. These results provided the foundation for developing new multi-disease-targeting drugs that can treat diabetes, obesity, cardiovascular disease, cancer, and other diseases by the stimulation of AMPK1 and AMPK2 targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信