基于生命周期评估和经济考虑的挡土墙新选择过程

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY
Hend Zbidi, Saloua El Euch Khay
{"title":"基于生命周期评估和经济考虑的挡土墙新选择过程","authors":"Hend Zbidi, Saloua El Euch Khay","doi":"10.4028/p-ovz45x","DOIUrl":null,"url":null,"abstract":"Earth-retaining walls (ERWs) are widely used structures in civil engineering, a field known for their substantial environmental impact. However, the current practice of selecting ERW types for a project often neglects environmental concerns. To address this issue, this study proposes a novel process to enhance the rationality of ERW selection. It involves assessing the performance of commonly used ERW types in terms of both environmental issues and economic considerations. The proposed process relies on calculating a total cost (TC), which incorporates the costs of two crucial environmental indicators: carbon dioxide (CO 2 ) emissions and cumulative energy demand (CED), evaluated using life cycle assessment (LCA), in addition to considering the traditional construction cost of the ERW. By determining the TC for various retaining wall options, engineers can identify the optimal ERW type for a specific project. To validate the effectiveness of this environmental-economic approach, a case study was conducted comparing two ERW types: the conventional concrete-reinforced retaining wall (CRRW) and the geosynthetic-reinforced retaining wall (GRRW). The study evaluated structures constructed at four different heights, ranging from 3 m to 6 m. The results demonstrate that the GRRW is the optimal option, offering a lower TC than the equivalent wall conventionally built with reinforced concrete across all evaluated heights. However, the difference in TC between the two ERWs is more pronounced for taller walls. At a height of 3 m, the total cost ratio between the CRRW and the GRRW is moderate at 1.2, while it substantially increases to 2.5 at a height of 6 m. In conclusion, the proposed process was effectively applied to the case study, providing valuable insights into the assessment of earth-retaining structures from both environmental and economic perspectives. It can assist engineers in prioritizing and selecting the most sustainable and cost-effective ERW type for a specific project.","PeriodicalId":45925,"journal":{"name":"International Journal of Engineering Research in Africa","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Selection Process for Retaining Walls Based on Life Cycle Assessment and Economic Concerns\",\"authors\":\"Hend Zbidi, Saloua El Euch Khay\",\"doi\":\"10.4028/p-ovz45x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earth-retaining walls (ERWs) are widely used structures in civil engineering, a field known for their substantial environmental impact. However, the current practice of selecting ERW types for a project often neglects environmental concerns. To address this issue, this study proposes a novel process to enhance the rationality of ERW selection. It involves assessing the performance of commonly used ERW types in terms of both environmental issues and economic considerations. The proposed process relies on calculating a total cost (TC), which incorporates the costs of two crucial environmental indicators: carbon dioxide (CO 2 ) emissions and cumulative energy demand (CED), evaluated using life cycle assessment (LCA), in addition to considering the traditional construction cost of the ERW. By determining the TC for various retaining wall options, engineers can identify the optimal ERW type for a specific project. To validate the effectiveness of this environmental-economic approach, a case study was conducted comparing two ERW types: the conventional concrete-reinforced retaining wall (CRRW) and the geosynthetic-reinforced retaining wall (GRRW). The study evaluated structures constructed at four different heights, ranging from 3 m to 6 m. The results demonstrate that the GRRW is the optimal option, offering a lower TC than the equivalent wall conventionally built with reinforced concrete across all evaluated heights. However, the difference in TC between the two ERWs is more pronounced for taller walls. At a height of 3 m, the total cost ratio between the CRRW and the GRRW is moderate at 1.2, while it substantially increases to 2.5 at a height of 6 m. In conclusion, the proposed process was effectively applied to the case study, providing valuable insights into the assessment of earth-retaining structures from both environmental and economic perspectives. It can assist engineers in prioritizing and selecting the most sustainable and cost-effective ERW type for a specific project.\",\"PeriodicalId\":45925,\"journal\":{\"name\":\"International Journal of Engineering Research in Africa\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-ovz45x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-ovz45x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

挡土墙(erw)是土木工程中广泛使用的结构,其对环境的影响是众所周知的。然而,目前为项目选择战争遗留爆炸物类型的做法往往忽略了环境问题。为了解决这一问题,本研究提出了一个新的过程来提高战争遗留武器选择的合理性。它涉及从环境问题和经济考虑两方面评估常用的战争遗留爆炸物的性能。拟议的过程依赖于计算总成本(TC),其中包括两个关键环境指标的成本:二氧化碳(CO 2)排放和累积能源需求(CED),使用生命周期评估(LCA)进行评估,此外还考虑了战争遗留武器的传统建造成本。通过确定各种挡土墙方案的总承载力,工程师可以为特定项目确定最佳的总承载力类型。为了验证这种环境经济方法的有效性,对传统混凝土加筋挡土墙(CRRW)和土工合成材料加筋挡土墙(GRRW)两种类型的挡土墙进行了案例研究。该研究评估了四种不同高度的建筑,从3米到6米不等。结果表明,GRRW是最佳选择,在所有评估高度上提供比传统钢筋混凝土等效墙更低的TC。然而,两种erw之间的TC差异在较高的墙壁上更为明显。在高度为3 m时,crrww与grrww的总成本之比中等,为1.2,而在高度为6 m时则大幅增加至2.5。总之,所提出的过程有效地应用于案例研究,从环境和经济的角度为土挡结构的评估提供了有价值的见解。它可以帮助工程师优先考虑并为特定项目选择最具可持续性和成本效益的战争遗留爆炸物类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Selection Process for Retaining Walls Based on Life Cycle Assessment and Economic Concerns
Earth-retaining walls (ERWs) are widely used structures in civil engineering, a field known for their substantial environmental impact. However, the current practice of selecting ERW types for a project often neglects environmental concerns. To address this issue, this study proposes a novel process to enhance the rationality of ERW selection. It involves assessing the performance of commonly used ERW types in terms of both environmental issues and economic considerations. The proposed process relies on calculating a total cost (TC), which incorporates the costs of two crucial environmental indicators: carbon dioxide (CO 2 ) emissions and cumulative energy demand (CED), evaluated using life cycle assessment (LCA), in addition to considering the traditional construction cost of the ERW. By determining the TC for various retaining wall options, engineers can identify the optimal ERW type for a specific project. To validate the effectiveness of this environmental-economic approach, a case study was conducted comparing two ERW types: the conventional concrete-reinforced retaining wall (CRRW) and the geosynthetic-reinforced retaining wall (GRRW). The study evaluated structures constructed at four different heights, ranging from 3 m to 6 m. The results demonstrate that the GRRW is the optimal option, offering a lower TC than the equivalent wall conventionally built with reinforced concrete across all evaluated heights. However, the difference in TC between the two ERWs is more pronounced for taller walls. At a height of 3 m, the total cost ratio between the CRRW and the GRRW is moderate at 1.2, while it substantially increases to 2.5 at a height of 6 m. In conclusion, the proposed process was effectively applied to the case study, providing valuable insights into the assessment of earth-retaining structures from both environmental and economic perspectives. It can assist engineers in prioritizing and selecting the most sustainable and cost-effective ERW type for a specific project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
14.30%
发文量
62
期刊介绍: "International Journal of Engineering Research in Africa" is a peer-reviewed journal which is devoted to the publication of original scientific articles on research and development of engineering systems carried out in Africa and worldwide. We publish stand-alone papers by individual authors. The articles should be related to theoretical research or be based on practical study. Articles which are not from Africa should have the potential of contributing to its progress and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信