Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost, Bai-Xiang Xu
{"title":"永磁体的微磁学和多尺度磁滞模拟","authors":"Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost, Bai-Xiang Xu","doi":"10.1108/compel-12-2022-0424","DOIUrl":null,"url":null,"abstract":"Purpose Confronting the unveiled sophisticated structural and physical characteristics of permanent magnets, notably the samarium–cobalt (Sm-Co) alloy, This work aims to introduce a simulation scheme that can link physics-based micromagnetics on the nanostructures and magnetostatic homogenization on the mesoscale polycrystalline structures. Design/methodology/approach The simulation scheme is arranged in a multiscale fashion. The magnetization behaviors on the nanostructures examined with various orientations are surrogated as the micromagnetic-informed hysterons. The hysteresis behavior of the mesoscale polycrystalline structures with micromagnetic-informed hysterons is then evaluated by computational magnetostatic homogenization. Findings The micromagnetic-informed hysterons can emulate the magnetization reversal of the parameterized Sm-Co nanostructures as the local hysteresis behavior on the mesostructures. The simulation results of the mesoscale polycrystal demonstrate that the demagnetization process starts from the grain with the largest orientation angle (a) and then propagates to the surrounding grains. Research limitations/implications The presented scheme depicts the demand for integrating data-driven methods, as the parameters of the surrogate hysteron intrinsically depend on the nanostructure and its orientation. Further hysteron parameters that help the surrogate hysteron emulate the micromagnetic-simulated magnetization reversal should be examined. Originality/value This work provides a novel multiscale scheme for simulating the polycrystalline permanent magnets’ hysteresis while recapitulating the nanoscale mechanisms, such as the nucleation of domains, and domain wall migration and pinning. This scheme can be further extended to simulate the part-level hysteresis considering the mesoscale features.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"15 2","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micromagnetics and multiscale hysteresis simulations of permanent magnets\",\"authors\":\"Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost, Bai-Xiang Xu\",\"doi\":\"10.1108/compel-12-2022-0424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Confronting the unveiled sophisticated structural and physical characteristics of permanent magnets, notably the samarium–cobalt (Sm-Co) alloy, This work aims to introduce a simulation scheme that can link physics-based micromagnetics on the nanostructures and magnetostatic homogenization on the mesoscale polycrystalline structures. Design/methodology/approach The simulation scheme is arranged in a multiscale fashion. The magnetization behaviors on the nanostructures examined with various orientations are surrogated as the micromagnetic-informed hysterons. The hysteresis behavior of the mesoscale polycrystalline structures with micromagnetic-informed hysterons is then evaluated by computational magnetostatic homogenization. Findings The micromagnetic-informed hysterons can emulate the magnetization reversal of the parameterized Sm-Co nanostructures as the local hysteresis behavior on the mesostructures. The simulation results of the mesoscale polycrystal demonstrate that the demagnetization process starts from the grain with the largest orientation angle (a) and then propagates to the surrounding grains. Research limitations/implications The presented scheme depicts the demand for integrating data-driven methods, as the parameters of the surrogate hysteron intrinsically depend on the nanostructure and its orientation. Further hysteron parameters that help the surrogate hysteron emulate the micromagnetic-simulated magnetization reversal should be examined. Originality/value This work provides a novel multiscale scheme for simulating the polycrystalline permanent magnets’ hysteresis while recapitulating the nanoscale mechanisms, such as the nucleation of domains, and domain wall migration and pinning. This scheme can be further extended to simulate the part-level hysteresis considering the mesoscale features.\",\"PeriodicalId\":55233,\"journal\":{\"name\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"volume\":\"15 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/compel-12-2022-0424\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/compel-12-2022-0424","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Micromagnetics and multiscale hysteresis simulations of permanent magnets
Purpose Confronting the unveiled sophisticated structural and physical characteristics of permanent magnets, notably the samarium–cobalt (Sm-Co) alloy, This work aims to introduce a simulation scheme that can link physics-based micromagnetics on the nanostructures and magnetostatic homogenization on the mesoscale polycrystalline structures. Design/methodology/approach The simulation scheme is arranged in a multiscale fashion. The magnetization behaviors on the nanostructures examined with various orientations are surrogated as the micromagnetic-informed hysterons. The hysteresis behavior of the mesoscale polycrystalline structures with micromagnetic-informed hysterons is then evaluated by computational magnetostatic homogenization. Findings The micromagnetic-informed hysterons can emulate the magnetization reversal of the parameterized Sm-Co nanostructures as the local hysteresis behavior on the mesostructures. The simulation results of the mesoscale polycrystal demonstrate that the demagnetization process starts from the grain with the largest orientation angle (a) and then propagates to the surrounding grains. Research limitations/implications The presented scheme depicts the demand for integrating data-driven methods, as the parameters of the surrogate hysteron intrinsically depend on the nanostructure and its orientation. Further hysteron parameters that help the surrogate hysteron emulate the micromagnetic-simulated magnetization reversal should be examined. Originality/value This work provides a novel multiscale scheme for simulating the polycrystalline permanent magnets’ hysteresis while recapitulating the nanoscale mechanisms, such as the nucleation of domains, and domain wall migration and pinning. This scheme can be further extended to simulate the part-level hysteresis considering the mesoscale features.
期刊介绍:
COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.