{"title":"兰花物种分类效率:基于迁移学习的方法","authors":"Jianhua Wang, Haozhan Wang","doi":"10.1142/s1469026823500311","DOIUrl":null,"url":null,"abstract":"Orchid is a type of plant that grows on land. It is highly valued for its beauty and is cherished by many because of its graceful flower shape, delicate fragrance, vibrant colors, and noble symbolism. Although there are various types of orchids, some of them look similar in appearance and color, making it challenging for people to distinguish them quickly and accurately. The existing methods for classifying orchid species face issues with accuracy due to the similarities between different species and the differences within the same species. This affects their practical use. To address these challenges, this paper introduces an efficient method for classifying orchid species using transfer learning. The main achievement of this study is the successful utilization of transfer learning to achieve accurate orchid species classification. This approach reduces the need for large datasets, minimizes overfitting, cuts down on training time and costs, and enhances classification accuracy. Specifically, the proposed approach involves four phases. First, we gathered a collection of 12 orchid image sets, totaling 12,227 images, through a combination of network sources and field photography. Next, we analyzed the distinctive features present in the collected orchid image sets. We identified certain connections between the acquired orchid datasets and other datasets. Finally, we employed transfer learning technology to create an efficient classification function for orchid species based on these relationships. As a result, our proposed method effectively addresses the challenges highlighted. Experimental results demonstrate that our classification algorithm, which utilizes transfer learning, achieves a classification accuracy rate of 96.16% compared to not using the transfer learning method. This substantial improvement in accuracy greatly enhances the efficiency of orchid classification.","PeriodicalId":45994,"journal":{"name":"International Journal of Computational Intelligence and Applications","volume":"7 4","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency in Orchid Species Classification: A Transfer Learning-Based Approach\",\"authors\":\"Jianhua Wang, Haozhan Wang\",\"doi\":\"10.1142/s1469026823500311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orchid is a type of plant that grows on land. It is highly valued for its beauty and is cherished by many because of its graceful flower shape, delicate fragrance, vibrant colors, and noble symbolism. Although there are various types of orchids, some of them look similar in appearance and color, making it challenging for people to distinguish them quickly and accurately. The existing methods for classifying orchid species face issues with accuracy due to the similarities between different species and the differences within the same species. This affects their practical use. To address these challenges, this paper introduces an efficient method for classifying orchid species using transfer learning. The main achievement of this study is the successful utilization of transfer learning to achieve accurate orchid species classification. This approach reduces the need for large datasets, minimizes overfitting, cuts down on training time and costs, and enhances classification accuracy. Specifically, the proposed approach involves four phases. First, we gathered a collection of 12 orchid image sets, totaling 12,227 images, through a combination of network sources and field photography. Next, we analyzed the distinctive features present in the collected orchid image sets. We identified certain connections between the acquired orchid datasets and other datasets. Finally, we employed transfer learning technology to create an efficient classification function for orchid species based on these relationships. As a result, our proposed method effectively addresses the challenges highlighted. Experimental results demonstrate that our classification algorithm, which utilizes transfer learning, achieves a classification accuracy rate of 96.16% compared to not using the transfer learning method. This substantial improvement in accuracy greatly enhances the efficiency of orchid classification.\",\"PeriodicalId\":45994,\"journal\":{\"name\":\"International Journal of Computational Intelligence and Applications\",\"volume\":\"7 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026823500311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026823500311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Efficiency in Orchid Species Classification: A Transfer Learning-Based Approach
Orchid is a type of plant that grows on land. It is highly valued for its beauty and is cherished by many because of its graceful flower shape, delicate fragrance, vibrant colors, and noble symbolism. Although there are various types of orchids, some of them look similar in appearance and color, making it challenging for people to distinguish them quickly and accurately. The existing methods for classifying orchid species face issues with accuracy due to the similarities between different species and the differences within the same species. This affects their practical use. To address these challenges, this paper introduces an efficient method for classifying orchid species using transfer learning. The main achievement of this study is the successful utilization of transfer learning to achieve accurate orchid species classification. This approach reduces the need for large datasets, minimizes overfitting, cuts down on training time and costs, and enhances classification accuracy. Specifically, the proposed approach involves four phases. First, we gathered a collection of 12 orchid image sets, totaling 12,227 images, through a combination of network sources and field photography. Next, we analyzed the distinctive features present in the collected orchid image sets. We identified certain connections between the acquired orchid datasets and other datasets. Finally, we employed transfer learning technology to create an efficient classification function for orchid species based on these relationships. As a result, our proposed method effectively addresses the challenges highlighted. Experimental results demonstrate that our classification algorithm, which utilizes transfer learning, achieves a classification accuracy rate of 96.16% compared to not using the transfer learning method. This substantial improvement in accuracy greatly enhances the efficiency of orchid classification.
期刊介绍:
The International Journal of Computational Intelligence and Applications, IJCIA, is a refereed journal dedicated to the theory and applications of computational intelligence (artificial neural networks, fuzzy systems, evolutionary computation and hybrid systems). The main goal of this journal is to provide the scientific community and industry with a vehicle whereby ideas using two or more conventional and computational intelligence based techniques could be discussed. The IJCIA welcomes original works in areas such as neural networks, fuzzy logic, evolutionary computation, pattern recognition, hybrid intelligent systems, symbolic machine learning, statistical models, image/audio/video compression and retrieval.