具有完全单调型核的随机Volterra方程的逼近

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Aurélien Alfonsi, Ahmed Kebaier
{"title":"具有完全单调型核的随机Volterra方程的逼近","authors":"Aurélien Alfonsi, Ahmed Kebaier","doi":"10.1090/mcom/3911","DOIUrl":null,"url":null,"abstract":"In this work, we develop a multifactor approximation for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional Stochastic Volterra Equations (SVE) with Lipschitz coefficients and kernels of completely monotone type that may be singular. First, we prove an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-estimation between two SVEs with different kernels, which provides a quantification of the error between the SVE and any multifactor Stochastic Differential Equation (SDE) approximation. For the particular rough kernel case with Hurst parameter lying in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 0 comma 1 slash 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(0,1/2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we propose various approximating multifactor kernels, state their rates of convergence and illustrate their efficiency for the rough Bergomi model. Second, we study a Euler discretization of the multifactor SDE and establish a convergence result towards the SVE that is uniform with respect to the approximating multifactor kernels. These obtained results lead us to build a new multifactor Euler scheme that reduces significantly the computational cost in an asymptotic way compared to the Euler scheme for SVEs. Finally, we show that our multifactor Euler scheme outperforms the Euler scheme for SVEs for option pricing in the rough Heston model.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of stochastic Volterra equations with kernels of completely monotone type\",\"authors\":\"Aurélien Alfonsi, Ahmed Kebaier\",\"doi\":\"10.1090/mcom/3911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we develop a multifactor approximation for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional Stochastic Volterra Equations (SVE) with Lipschitz coefficients and kernels of completely monotone type that may be singular. First, we prove an <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-estimation between two SVEs with different kernels, which provides a quantification of the error between the SVE and any multifactor Stochastic Differential Equation (SDE) approximation. For the particular rough kernel case with Hurst parameter lying in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 0 comma 1 slash 2 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(0,1/2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we propose various approximating multifactor kernels, state their rates of convergence and illustrate their efficiency for the rough Bergomi model. Second, we study a Euler discretization of the multifactor SDE and establish a convergence result towards the SVE that is uniform with respect to the approximating multifactor kernels. These obtained results lead us to build a new multifactor Euler scheme that reduces significantly the computational cost in an asymptotic way compared to the Euler scheme for SVEs. Finally, we show that our multifactor Euler scheme outperforms the Euler scheme for SVEs for option pricing in the rough Heston model.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们开发了具有Lipschitz系数和核可能是奇异的完全单调型的d -d维随机Volterra方程(SVE)的多因子逼近。首先,我们证明了两个具有不同核的随机微分方程(SVE)之间的l2l ^2估计,它提供了SVE与任何多因素随机微分方程(SDE)近似之间误差的量化。对于Hurst参数位于(0,1/2)(0,1/2)的特殊粗糙核情况,我们提出了各种近似的多因子核,说明了它们的收敛速度,并说明了它们对粗糙Bergomi模型的效率。其次,我们研究了多因子SDE的欧拉离散化,并建立了SVE对近似多因子核一致的收敛结果。这些得到的结果使我们建立了一个新的多因素欧拉格式,与SVEs的欧拉格式相比,该格式以渐近的方式显着降低了计算成本。最后,我们证明了我们的多因素欧拉方案在粗糙赫斯顿模型中优于SVEs的欧拉方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of stochastic Volterra equations with kernels of completely monotone type
In this work, we develop a multifactor approximation for d d -dimensional Stochastic Volterra Equations (SVE) with Lipschitz coefficients and kernels of completely monotone type that may be singular. First, we prove an L 2 L^2 -estimation between two SVEs with different kernels, which provides a quantification of the error between the SVE and any multifactor Stochastic Differential Equation (SDE) approximation. For the particular rough kernel case with Hurst parameter lying in ( 0 , 1 / 2 ) (0,1/2) , we propose various approximating multifactor kernels, state their rates of convergence and illustrate their efficiency for the rough Bergomi model. Second, we study a Euler discretization of the multifactor SDE and establish a convergence result towards the SVE that is uniform with respect to the approximating multifactor kernels. These obtained results lead us to build a new multifactor Euler scheme that reduces significantly the computational cost in an asymptotic way compared to the Euler scheme for SVEs. Finally, we show that our multifactor Euler scheme outperforms the Euler scheme for SVEs for option pricing in the rough Heston model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信