{"title":"具有完全单调型核的随机Volterra方程的逼近","authors":"Aurélien Alfonsi, Ahmed Kebaier","doi":"10.1090/mcom/3911","DOIUrl":null,"url":null,"abstract":"In this work, we develop a multifactor approximation for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional Stochastic Volterra Equations (SVE) with Lipschitz coefficients and kernels of completely monotone type that may be singular. First, we prove an <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-estimation between two SVEs with different kernels, which provides a quantification of the error between the SVE and any multifactor Stochastic Differential Equation (SDE) approximation. For the particular rough kernel case with Hurst parameter lying in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 0 comma 1 slash 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(0,1/2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we propose various approximating multifactor kernels, state their rates of convergence and illustrate their efficiency for the rough Bergomi model. Second, we study a Euler discretization of the multifactor SDE and establish a convergence result towards the SVE that is uniform with respect to the approximating multifactor kernels. These obtained results lead us to build a new multifactor Euler scheme that reduces significantly the computational cost in an asymptotic way compared to the Euler scheme for SVEs. Finally, we show that our multifactor Euler scheme outperforms the Euler scheme for SVEs for option pricing in the rough Heston model.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"18 6","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of stochastic Volterra equations with kernels of completely monotone type\",\"authors\":\"Aurélien Alfonsi, Ahmed Kebaier\",\"doi\":\"10.1090/mcom/3911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we develop a multifactor approximation for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional Stochastic Volterra Equations (SVE) with Lipschitz coefficients and kernels of completely monotone type that may be singular. First, we prove an <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-estimation between two SVEs with different kernels, which provides a quantification of the error between the SVE and any multifactor Stochastic Differential Equation (SDE) approximation. For the particular rough kernel case with Hurst parameter lying in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 0 comma 1 slash 2 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(0,1/2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we propose various approximating multifactor kernels, state their rates of convergence and illustrate their efficiency for the rough Bergomi model. Second, we study a Euler discretization of the multifactor SDE and establish a convergence result towards the SVE that is uniform with respect to the approximating multifactor kernels. These obtained results lead us to build a new multifactor Euler scheme that reduces significantly the computational cost in an asymptotic way compared to the Euler scheme for SVEs. Finally, we show that our multifactor Euler scheme outperforms the Euler scheme for SVEs for option pricing in the rough Heston model.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"18 6\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3911\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3911","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Approximation of stochastic Volterra equations with kernels of completely monotone type
In this work, we develop a multifactor approximation for dd-dimensional Stochastic Volterra Equations (SVE) with Lipschitz coefficients and kernels of completely monotone type that may be singular. First, we prove an L2L^2-estimation between two SVEs with different kernels, which provides a quantification of the error between the SVE and any multifactor Stochastic Differential Equation (SDE) approximation. For the particular rough kernel case with Hurst parameter lying in (0,1/2)(0,1/2), we propose various approximating multifactor kernels, state their rates of convergence and illustrate their efficiency for the rough Bergomi model. Second, we study a Euler discretization of the multifactor SDE and establish a convergence result towards the SVE that is uniform with respect to the approximating multifactor kernels. These obtained results lead us to build a new multifactor Euler scheme that reduces significantly the computational cost in an asymptotic way compared to the Euler scheme for SVEs. Finally, we show that our multifactor Euler scheme outperforms the Euler scheme for SVEs for option pricing in the rough Heston model.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.