行星科学实验用微米级冰粒。CoPhyLab低温颗粒样品的生产和储存

C Kreuzig, D Bischoff, N S Molinski, J N Brecher, A Kovalev, G Meier, J Oesert, S N Gorb, B Gundlach, J Blum
{"title":"行星科学实验用微米级冰粒。CoPhyLab低温颗粒样品的生产和储存","authors":"C Kreuzig, D Bischoff, N S Molinski, J N Brecher, A Kovalev, G Meier, J Oesert, S N Gorb, B Gundlach, J Blum","doi":"10.1093/rasti/rzad049","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we present a comprehensive investigation into the production, characteristics, handling, and storage of micrometre-sized granular water-ice. The focus of this research is to provide well-characterized analogue samples for laboratory experiments simulating icy bodies found in the Solar System, particularly comets. These experiments are conducted as part of the CoPhyLab (Comet Physics Laboratory) project, an international collaboration aimed at studying cometary processes to gain insights into the underlying physics of cometary activity. Granular water-ice, along with other less abundant but more volatile ices, plays a crucial role in the ejection of gas and dust particles when comets approach the Sun. To facilitate large-scale laboratory experiments, an ice-particle machine was developed, capable of autonomously producing sufficient quantities of granular water-ice. Additionally, a cryogenic desiccator was designed to remove any residual moisture from the ice using liquid nitrogen. The resulting ice particles can be mixed with other materials and stored within the desiccator or a cryogenic transport can, enabling easy shipment to any laboratory, including via air transport. To analyse the ice grains, cryogenic scanning electron microscopy was employed to determine their particle shape and size-frequency distribution. These analyses contribute to a better understanding of the properties of granular water-ice and its behavior under cryogenic conditions, supporting the objectives of the CoPhyLab project.","PeriodicalId":500957,"journal":{"name":"RAS Techniques and Instruments","volume":"33 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micrometre-sized ice particles for planetary science experiments – CoPhyLab cryogenic granular sample production and storage\",\"authors\":\"C Kreuzig, D Bischoff, N S Molinski, J N Brecher, A Kovalev, G Meier, J Oesert, S N Gorb, B Gundlach, J Blum\",\"doi\":\"10.1093/rasti/rzad049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we present a comprehensive investigation into the production, characteristics, handling, and storage of micrometre-sized granular water-ice. The focus of this research is to provide well-characterized analogue samples for laboratory experiments simulating icy bodies found in the Solar System, particularly comets. These experiments are conducted as part of the CoPhyLab (Comet Physics Laboratory) project, an international collaboration aimed at studying cometary processes to gain insights into the underlying physics of cometary activity. Granular water-ice, along with other less abundant but more volatile ices, plays a crucial role in the ejection of gas and dust particles when comets approach the Sun. To facilitate large-scale laboratory experiments, an ice-particle machine was developed, capable of autonomously producing sufficient quantities of granular water-ice. Additionally, a cryogenic desiccator was designed to remove any residual moisture from the ice using liquid nitrogen. The resulting ice particles can be mixed with other materials and stored within the desiccator or a cryogenic transport can, enabling easy shipment to any laboratory, including via air transport. To analyse the ice grains, cryogenic scanning electron microscopy was employed to determine their particle shape and size-frequency distribution. These analyses contribute to a better understanding of the properties of granular water-ice and its behavior under cryogenic conditions, supporting the objectives of the CoPhyLab project.\",\"PeriodicalId\":500957,\"journal\":{\"name\":\"RAS Techniques and Instruments\",\"volume\":\"33 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAS Techniques and Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/rasti/rzad049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rasti/rzad049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在这项工作中,我们对微米级颗粒水冰的生产、特性、处理和储存进行了全面的研究。本研究的重点是为模拟太阳系中发现的冰体,特别是彗星的实验室实验提供具有良好特征的模拟样本。这些实验是CoPhyLab(彗星物理实验室)项目的一部分,该项目是一个国际合作项目,旨在研究彗星的过程,以深入了解彗星活动的潜在物理原理。颗粒状的水冰,以及其他数量较少但挥发性更强的冰,在彗星接近太阳时,对气体和尘埃粒子的喷射起着至关重要的作用。为了便于大规模的实验室实验,研制了一种能够自主生产足够数量的颗粒水冰的冰粒机。此外,设计了一个低温干燥器,使用液氮去除冰中残留的水分。由此产生的冰颗粒可以与其他材料混合并存储在干燥器或低温运输罐中,以便于运输到任何实验室,包括通过航空运输。为了分析冰粒,采用低温扫描电镜测定了冰粒的形状和尺寸-频率分布。这些分析有助于更好地了解颗粒水冰的性质及其在低温条件下的行为,支持CoPhyLab项目的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micrometre-sized ice particles for planetary science experiments – CoPhyLab cryogenic granular sample production and storage
Abstract In this work, we present a comprehensive investigation into the production, characteristics, handling, and storage of micrometre-sized granular water-ice. The focus of this research is to provide well-characterized analogue samples for laboratory experiments simulating icy bodies found in the Solar System, particularly comets. These experiments are conducted as part of the CoPhyLab (Comet Physics Laboratory) project, an international collaboration aimed at studying cometary processes to gain insights into the underlying physics of cometary activity. Granular water-ice, along with other less abundant but more volatile ices, plays a crucial role in the ejection of gas and dust particles when comets approach the Sun. To facilitate large-scale laboratory experiments, an ice-particle machine was developed, capable of autonomously producing sufficient quantities of granular water-ice. Additionally, a cryogenic desiccator was designed to remove any residual moisture from the ice using liquid nitrogen. The resulting ice particles can be mixed with other materials and stored within the desiccator or a cryogenic transport can, enabling easy shipment to any laboratory, including via air transport. To analyse the ice grains, cryogenic scanning electron microscopy was employed to determine their particle shape and size-frequency distribution. These analyses contribute to a better understanding of the properties of granular water-ice and its behavior under cryogenic conditions, supporting the objectives of the CoPhyLab project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信