聚乙烯纤维与纳米碳酸钙杂化对地聚合物复合材料流动性和强度的影响

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Hui Li, Li Li, Ning Zhang, Qi Feng
{"title":"聚乙烯纤维与纳米碳酸钙杂化对地聚合物复合材料流动性和强度的影响","authors":"Hui Li, Li Li, Ning Zhang, Qi Feng","doi":"10.1680/jmacr.23.00090","DOIUrl":null,"url":null,"abstract":"Using geopolymer composites to reduce the use of Portland cement can decrease carbon dioxide emissions. The focus of this study was on improving the strength of a geopolymer composite by assessing the positive hybrid effect of nano-calcium carbonate (NCC) and polyethylene fibres (PFs) of different lengths (6 mm and 12 mm). Fresh and hardened properties, including flowability and strength, were investigated to evaluate the hybrid effect. Generally, the hybrid effects from the PFs of different lengths and NCC were negative for flowability, but the hybrid effects were positive on strength. The combination of 12 mm PF + 6 mm PF + 1% NCC was found to have the highest hybrid effect on bending strength, resulting from the good fibre–matrix bond. The bending strength of the PF-reinforced geopolymer composite was assessed based on a new regression coefficient (A), which takes into account the hybrid effect, the fibre–matrix bond strength and fibre dispersion. The new model for the bending strength of PF-reinforced geopolymer composites introduced in this paper is simpler and more effective than previous models provided in the literature.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":"63 18","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of hybrid effect between polyethylene fiber and nano-calcium carbonate for flowability and strength of geopolymer composite\",\"authors\":\"Hui Li, Li Li, Ning Zhang, Qi Feng\",\"doi\":\"10.1680/jmacr.23.00090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using geopolymer composites to reduce the use of Portland cement can decrease carbon dioxide emissions. The focus of this study was on improving the strength of a geopolymer composite by assessing the positive hybrid effect of nano-calcium carbonate (NCC) and polyethylene fibres (PFs) of different lengths (6 mm and 12 mm). Fresh and hardened properties, including flowability and strength, were investigated to evaluate the hybrid effect. Generally, the hybrid effects from the PFs of different lengths and NCC were negative for flowability, but the hybrid effects were positive on strength. The combination of 12 mm PF + 6 mm PF + 1% NCC was found to have the highest hybrid effect on bending strength, resulting from the good fibre–matrix bond. The bending strength of the PF-reinforced geopolymer composite was assessed based on a new regression coefficient (A), which takes into account the hybrid effect, the fibre–matrix bond strength and fibre dispersion. The new model for the bending strength of PF-reinforced geopolymer composites introduced in this paper is simpler and more effective than previous models provided in the literature.\",\"PeriodicalId\":18113,\"journal\":{\"name\":\"Magazine of Concrete Research\",\"volume\":\"63 18\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magazine of Concrete Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jmacr.23.00090\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jmacr.23.00090","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

使用地聚合物复合材料来减少波特兰水泥的使用可以减少二氧化碳的排放。本研究的重点是通过评估不同长度(6毫米和12毫米)的纳米碳酸钙(NCC)和聚乙烯纤维(PFs)的正杂化效应来提高地聚合物复合材料的强度。研究了混合效果的新鲜和硬化性能,包括流动性和强度。一般来说,不同长度的PFs和NCC的杂化效应对流动性是负的,而对强度是正的。12 mm PF + 6 mm PF + 1% NCC的组合对抗弯强度的混杂效应最高,这是由于良好的纤维基质结合。考虑混杂效应、纤维基质结合强度和纤维分散等因素,采用新的回归系数(a)对pf增强地聚合物复合材料的抗弯强度进行了评价。本文提出的pf增强地聚合物复合材料抗弯强度计算模型比已有的模型更简单、更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of hybrid effect between polyethylene fiber and nano-calcium carbonate for flowability and strength of geopolymer composite
Using geopolymer composites to reduce the use of Portland cement can decrease carbon dioxide emissions. The focus of this study was on improving the strength of a geopolymer composite by assessing the positive hybrid effect of nano-calcium carbonate (NCC) and polyethylene fibres (PFs) of different lengths (6 mm and 12 mm). Fresh and hardened properties, including flowability and strength, were investigated to evaluate the hybrid effect. Generally, the hybrid effects from the PFs of different lengths and NCC were negative for flowability, but the hybrid effects were positive on strength. The combination of 12 mm PF + 6 mm PF + 1% NCC was found to have the highest hybrid effect on bending strength, resulting from the good fibre–matrix bond. The bending strength of the PF-reinforced geopolymer composite was assessed based on a new regression coefficient (A), which takes into account the hybrid effect, the fibre–matrix bond strength and fibre dispersion. The new model for the bending strength of PF-reinforced geopolymer composites introduced in this paper is simpler and more effective than previous models provided in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magazine of Concrete Research
Magazine of Concrete Research 工程技术-材料科学:综合
CiteScore
4.60
自引率
11.10%
发文量
102
审稿时长
5 months
期刊介绍: For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed. Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信